Feinstein Institutes for Medical Research Northwell Health[®]

DONALD AND BARBARA ZUCKER SCHOOL of MEDICINE AT HOFSTRA/NORTHWELL

Targeting Fetal Hemoglobin Expression in Sickle Cell Disease for Novel Therapies

Lionel Blanc, PhD

June 16, 2021

Lblanc@northwell.edu

Globin Switch

Sankaran, V.G. and Weiss M.J., Nat. Medicine, 2015

Regulation of the Gamma to Beta Globin Switch

Adapted from Xu, J. et al., The Hematologist 2011

Number of People with SCD

- Globally: >200,000 births/year
- United States: 70-100,000 persons with SCD
- New York State: 1,911 newborns in 8 years (240/year)
- CCMC: 24 newborns/year, total of >500 children are followed

Strategies for the Treatment of Sickle Cell Disease

- . Stem Cell Transplant
- . Gene Therapy
- . Medication

Pomalidomide

- Pomalidomide increases F-cells more than HU *in vitro* by an unknown mechanism of action. Moutouth de Parseval *et al.* JCI 2008
- Pomalidomide is FDA approved for treatment of Multiple Myeloma.
- Our hypothesis is that Pomalidomide acts through the modulation of the transcription networks regulating globin switching.

Methods

We use CD34+ cells in vitro culture system

Many different culture systems

Pomalidomide Induces a Reciprocal Globin Switch

Pomalidomide Induces a Reciprocal Globin Switch

CD34+ cells from control donors

CD34+ cells from sickle cell disease patients

Pancellular Distribution of Fetal Hemoglobin after Pomalidomide Treatment

FSC

Pomalidomide and its analogues target lkaros in the treatment of Multiple Myeloma

Kronke J et al. *Nature*.2015.

Patients with mutation in IKZF1 Do Not Present Elevated Levels of HbF

Family C c.500A→G (p.H167R)									Family F 4.7-Mb deletion on chromosome 7															Normal Range				
Subject	C1	C1A	C2	C3	C1B	F1	F2	F3	F4	F4A	F4B	F5	F5A	F5B	F5C	F5D	F6	F7	F8	F9	F10	F11	F12	F13	F14	F14B	F14D	•
Gender	F	м	F	F	F	F	F	м	м	м	F	F	м	м	F	F	м	F	F	м	м	м	м	м	м	м	F	-
Age	49	47	18	16	14	64	71	39	37	10	6	35	11	3	12	6	48	14	10	8	23	21	19	16	44	12	11	•
Affected/ Unaffected (A/U)	A	U	A	A	U	Α	Α	A	A	U	U	A	U.	U•	U.	U.	A	A	A	Α	A	A	A	A	U	U	U	
WBC, K/uL	9.01	6.34	7.58	9.68	13.08	6.10	3.95	4.70	6.45	7.04	8.36	8.62	8.4	9.84	10.7	7.32	5.40	4.81	5.95	4.74	7.87	8.9	8.68	6.98	10.33	6.32	5.67	3.98-10.04
RBC, M/uL	4.80	5.13	5.08	4.80	4.63	3.40	4.51	4.79	4.65	4.14	3.69	4.31	4.7	3.7	4.71	4.33	5.5	4.98	5.02	4.33	5.19	5.18	4.97	5.13	5.06	4.74	4.35	3.93-5.22
HGB, g/dL	13.9	16.3	13.1	14.6	13.7	10.2	13.9	15.1	14.8	12.2	10.5	13.0	13.6	10.5	13.7	12.5	16.1	14.7	13.9	12.1	16.9	17.4	16.0	16.6	15.2	14.0	13.2	11.0-17.0
НСТ, %	41.5	46.9	40.7	42.1	40.3	32.3	43.1	45.8	45.0	37.5	33.2	42.4	42.7	33.2	42.8	39.1	50.6	46.9	43.8	38.8	50.1	52.8	47.9	49.9	49.1	44.6	41.1	34.0-50.0
MCV, fL	86.5	91.4	80.1	87.7	87.0	95.0	95.6	95.6	96.8	90.6	90.0	98.4	90.9	89.7	90.9	90.3	92.0	94.2	87.3	89.6	96.5	101.9	96.4	97.3	97.0	94.1	94.5	79.4-96.0
MCH, pg	29.0	31.8	25.8	30.4	29.6	30.0	30.8	31.5	31.8	29.5	28.5	30.2	28.9	28.4	29.1	28.9	29.3	29.5	27.7	27.9	32.6	33.6	32.2	32.4	30.0	29.5	30.3	25.6-33.0
MCHC, g/dL	33.5	34.8	32.2	34.7	34.0	31.6	32.3	33.0	32.9	32.5	31.6	30.7	31.9	31.6	32.0	32.0	31.8	31.3	31.7	31.2	33.7	33.0	33.4	33.3	31.0	31.4	32.1	32.2-35.5
RDW, %	12.7	12.6	14.1	13.1	12.7	14.1	14.9	13.8	14.1	12.9	13.3	13.4	13.3	14.4	13.2	13.4	14.6	13.5	14.3	13.0	13.5	13.3	14.3	14.0	12.7	13.4	12.3	11.7-14.4
Reticulocyte, %				•		1.4	1.3	1.0	1.1	0.9	0.9	1.5	1.2	1.7	1.4	1.4	1.8	0.9	0.8	0.8	2.5	3.3	2.7	2.2	1.5	1.4	1.3	0.5-2.0
Absolute Reticulocytes, K/uL						46.9	60.0	46.5	49.3	37.7	33.6	64.7	56.6	62.9	64.1	60.6	96.8	44.8	41.2	34.6	126.0	171.5	134.2	113.9	77.4	68.3	56.1	
HbF, %	1.5	1.1	1.1	0.5	0.8	0.2	0.3	0.2	0.2	0.2	0.3	0.2	0.2	1.5	0.8	0.3	0.2	0.2	0.4	0.2	0.2	0.7	0.2	0.2	0.3	0.3	0.9	< 2.0
HbA2, %	2.2	2.5	2.1	2.1	2.7	2.8	2.9	2.9	3.1	2.8	3.2	2.7	3.2	3.1	3.0	3.0	3.0	2.8	2.7	3.2	3.0	3.1	2.9	2.9	3.0	2.9	3.1	< 3.5

Adapted from Abdulhay N et al. Blood. 2016

Red Cells from Multiple Myeloma Patients on Pomalidomide Express Gamma-Globin

Pomalidomide treatment

IMiDs in the Reactivation of Fetal Hemoglobin (HbF)

Dulmovits, B.M. et al. Blood, 2016

Pom Induces γ-globin Expression in a Stage Specific Manner

D14 of culture

Why Try to Find the Targets of Pom in Erythropoiesis?

IMiDs may not be used in most patients

Many clinical trials focused on BCL11A

Proteomics of Pom-Treated CD34⁺ Cells Reveal FIZ1 as a Novel Pomalidomide Target

FIZ1... Some Background

• FIZ1 (FLT3 interacting zinc finger 1)

- Discovered as a binding partner of FLT3
- Only significantly studied in retinal biology
- Contains zinc finger domains similar to those in other IMiD targets: Ikaros, Aiolos and ZFP91

FIZ1... Some Background

• FIZ1 (FLT3 interacting zinc finger 1)

- Discovered as a binding partner of FLT3
- Only significantly studied in retinal biology
- Contains zinc finger domains similar to those in other IMiD targets: Ikaros, Aiolos and ZFP91

Yan, H. et al., Am. J. Hematol, 2018

FIZ1 is Expressed Early During Erythropoiesis and its Degradation by Pom is Specific to Bone Marrow Erythroid Cells

CRISPR/Cas9-Mediated Knockout of *FIZ1* Induces γ-Globin Expression

Summary

Created with BioRender

W Feinstein Institutes for Medical Research Northwell Health

Present Members:

Julien Papoin Yue Feng Tang Theodoros Karnavas Mushran Khan Rachel Josselsohn

Past Members:

Brian Dulmovits Jimmy Hom **Ryan Ashley** Elena Brindley **Emily Hartman Hiren Patel** Sibgha Zaheer Lauren Kennedy

Jeffrey Lipton Adrianna Vlachos Eva Atsidaftos

Daniel A Grande Kevin J Tracey Ulf Andersson Betsy J Barnes Yousef Al Abed Jianhua Li Philippe Marambaud Huan Yang Mingzu He

A New York Blood Center

Mohandas Narla Hongxia Yan

STANFORD SCHOOL OF MEDICINE Stanford University Medical Center

Anupama Narla Nan Wang

St. Jude Children'

Patrick G. Gallagher Vince Schultz

John Crispino Rescarch Hospital Te Ling

Steve Carr Namrata Udeshi

DANA-FARBER

Leonard I Zon

University of Colorado Anschutz Medical Campus

Acknowledgments

Cheryl Ackert-Bicknell

Luanne L. Peters

Lydie Da Costa Naomi Taylor Sandrina Kinet **Olivier Hermine**

Cincinnati Children's

Theodosia A. Kalfa Katie Seu Laurel Romano

Velia Fowler

Funding Sources

National Heart, Lung, and Blood Institute

┓ ┓ ┓ •••• **1 1 1** Cohen Children's Medical Center Northwell Health[®]

TRANSFEIR Institutes for Medical Research Northwell Health

Lblanc@northwell.edu

The patients and their families

Pomalidomide Acts Early During Erythroid Differentiation

Pomalidomide acts early during erythroid differentiation

Terminal erythroid differentiation remains unaffected by Pomalidomide treatment

Bar= 5µm

Pomalidomide differentially affects the transcription networks involved in erythropoiesis and globin switching

Experiments performed at Day 4 of erythroid differentiation

Pomalidomide differentially affects the transcription networks involved in erythropoiesis and globin switching

Pomalidomide Mechanism of Action is Conserved in SCD

DMSO

Pomalidomide Mechanism of Action is Conserved in SCD

Pomalidomide does not appear to affect BCL11A expression levels in cultured human neuronal cell lines

Multiple Effects of Hydroxyurea

Ware, R. E. Blood 2010

Pomalidomide but not Hydroxyurea targets lkaros to proteasomal degradation during erythroid differentiation

Loss of *FIZ1* Differentially Impacts Regulators of γ-Globin Regulation

FIZ1 Knockout Does Not Delay Erythropoiesis

D4 of culture

