The genetics of cerebrovascular complications in sickle cell disease

David Rees

King's College Hospital and King's College London

Global Sickle Cell Conference, Paris, 2022

Cerebrovascular disease in SCD

- One of the most important complications in SCD
 - 40-50% children with SCA have some evidence of cerebrovascular disease by age of 14 years
 - Increasingly recognized in adults
- Genetic predisposition towards stroke
 - Many publications identifying potential variants changing stroke risk
 - Some genome wide studies
 - Bayesian network modelling (Sebastiani et al, Nat Genetics 2005)
 - Many studies of candidate genes
 - Very few variants validated in duplicate studies
 - None in routine clinical use

Pathophysiology of ischemic cerebrovascular disease in SCD

- Vascular endothelial dysfunction
- Damage to blood vessel structure
 - Vaso-occlusion
 - Bood vessel wall ischemia
 - Stenosis
 - Aneurysm
 - Tortuosity
 - Moya Moya
- Reduced oxygen delivery to brain
 - Anemia chronic with acute exacerbations
 - Impaired regulation of blood flow
 - Hypoxemia
- Conventional risk factors
 - Hypertension
 - Lipid abnormalities
 - Renal and cardiac disease

Cerebrovascular complications

- Overt Ischaemic Stroke (OIS)
 - Up to 11% of children with SCA without primary stroke prevention
 - 1.02% annual risk between ages of 2 to 5 years.
 - Typically preceded by progressive vasculopathy
- Haemorrhagic Stroke
 - Peak occurrence between 20-29yrs
 - Often result of aneurysm or moya-moya vasculopathy
- Silent Cerebral Infarct (SCI)
 - "Hyperintensity >3mm seen in two planes on T2 weighted MRI with no focal clinical deficit"
 - Up to 35% of children
 - Negative impact on IQ
 - 14 fold increased risk of OIS
- Vasculopathy
 - Smooth muscle hyperplasia with overlying endothelial damage and fibrosis
 - Tortuosity, stenosis, Moya Moya

Heritability of large vessel disease in SCD

- Sibling analysis
 - Ischaemic stroke occurs in families more often than predicted by chance
 - Abnormal TCD 50x more likely if sibling has abnormal TCD
- HLA genotypes associated with increased and decreased risks of OIS
- 4 or more functional α globin genes
 - 2-6 x increased risk of abnormal TCDs
 - 2 x increased risk of ischaemic stroke
- Other potential variants
 - Associative: G6PD, TNFalpha, ANXA2, TEK, TGFBR3 & PON1
 - Protective: GOLGB1, ENPP1, ADCY9

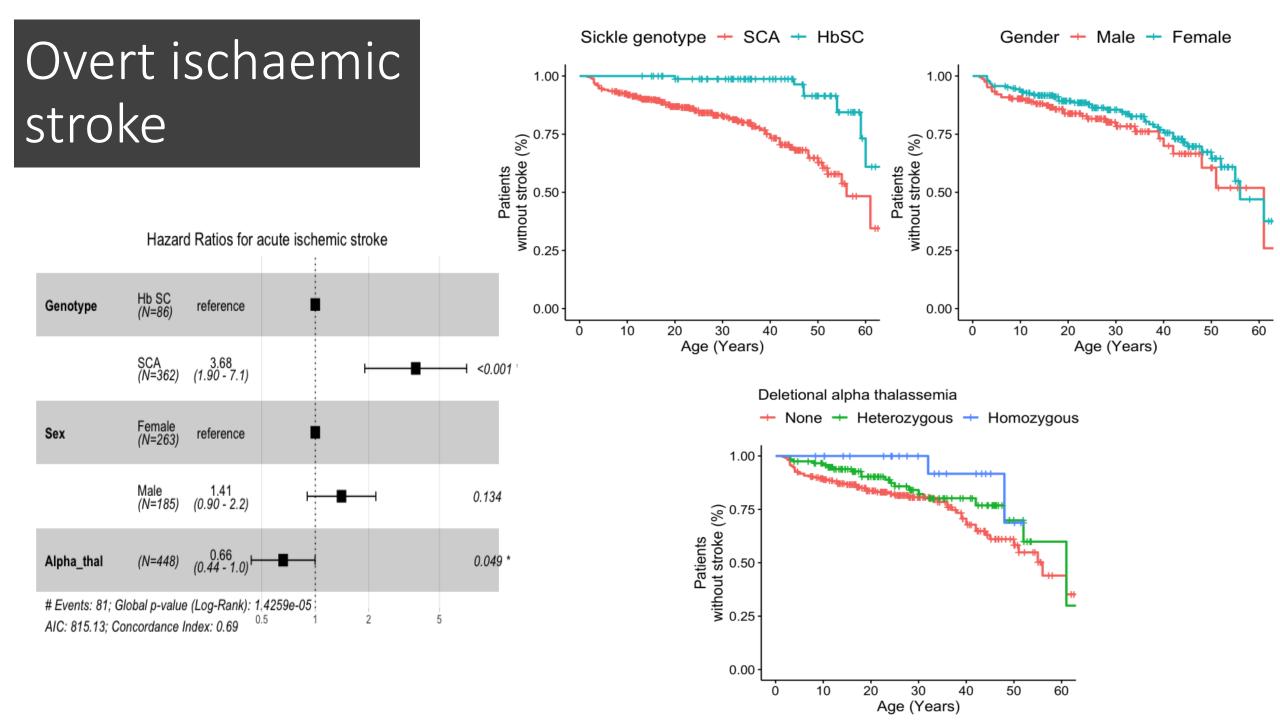
Driscoll, Blood 2003 Sebastiani, Am J Haem 2012 Kwiatkowski BJHaem 2003 Ohene-Frimpong, Blood 1998 Cox, BJHaem, 2014 Bernaudin, Blood 2008 Flanagan, Blood 2011 & 2013

Heritability of silent cerebral infarcts

- No family studies
- One GWAS as an ASH abstract
 - 570 children from SIT cohort
 - 151 cases and 343 controls after QC
 - NOM1
 - FRMD4A
 - ADAM10
- No evidence α -thal protective
- Other associative features
 - Lower steady state Hb
 - Inconsistent association with lower HbF
 - Male sex
 - Relative increase in blood pressure
 - Inconsistent association with G6PD deficiency

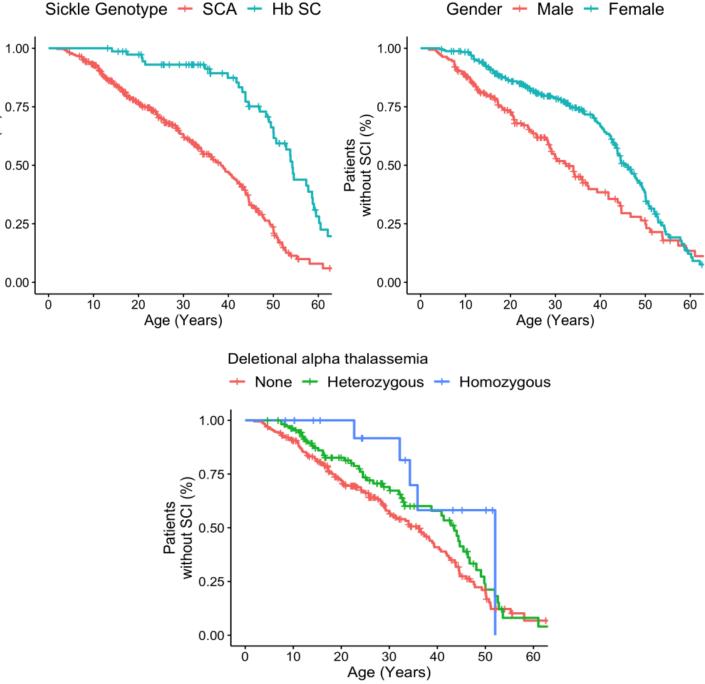
Genome Wide Association Study

Use of a pre-existing SNP array dataset available in our research group.


- 832 patients with complete variant datasets (~16.7million SNPs)
- Establish precise categorization of cerebrovascular disease of each patient

Limitations

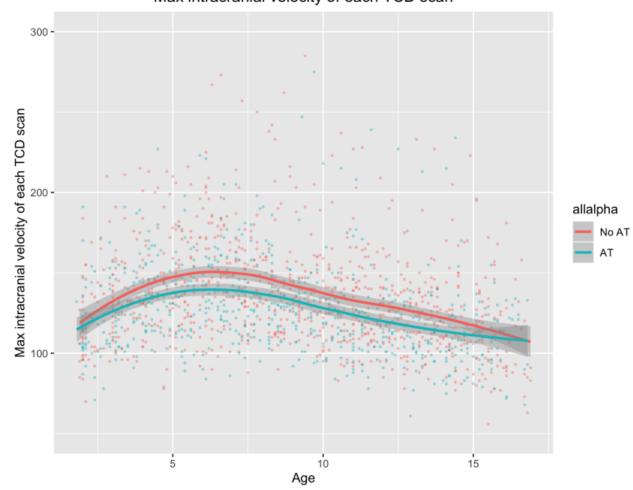
- Small cohort with respect to GWAS studies
- Variable age of incidence of cerebrovascular events


Cohort summary information

- 516 patients, average age 34.9yrs (range 10.8 to 83.6yrs)
 - 295 female, 221 male
 - 410 HbSS or HbS/B⁰, 100 HbSC, 6 HbS/B⁺,
- α -thal found in 198 of 509 cases (38.9%)
- G6PD in 35 of 329 cases (10.6%)
- Ischaemic Stroke in 81 (av age 28yrs, 1.5-70yrs) of 455 cases (17.5%)
- Vasculopathy in 118 (av age 20yrs, 1.5-61yrs) of 503 cases (16.6%)
- SCI in 222 (average age 31yrs, 1.8-75ys) of 415 case (53.9%)

Gender + Male + Female Sickle genotype + SCA + Hb SC Large Vessel 1.00 1.00 Disease Patients without LVD (%) Patients without LVD (%) 0.25 0.25 Hazard Ratios for cerebral large vessel disease 0.00 0.00 Hb SC (N=97) 50 60 30 30 60 10 20 40 reference 10 20 40 50 Genotype 0 Age (Years) Age (Years) Deletional alpha thalassemia 4.46 (2.40 - 8.3) SCA (N=399) <0.001 + None + Heterozygous + Homozygous 1.00 Female (N=291) reference Sex (%) O.75 without LVD (%) 0.50 0.25 Male (N=205) 1.50 (1.04 - 2.2) 0.029 * (N=496) 0.63 (0.45 - 0.9) Alpha_thal 0.01 ** # Events: 118; Global p-value (Log-Rank): 2.5041e-09 2 5 10 0.5 0.00 AIC: 1240.42; Concordance Index: 0.69 60 20 30 50 0 10 40 Age (Years)

Silent cerebral infarcts

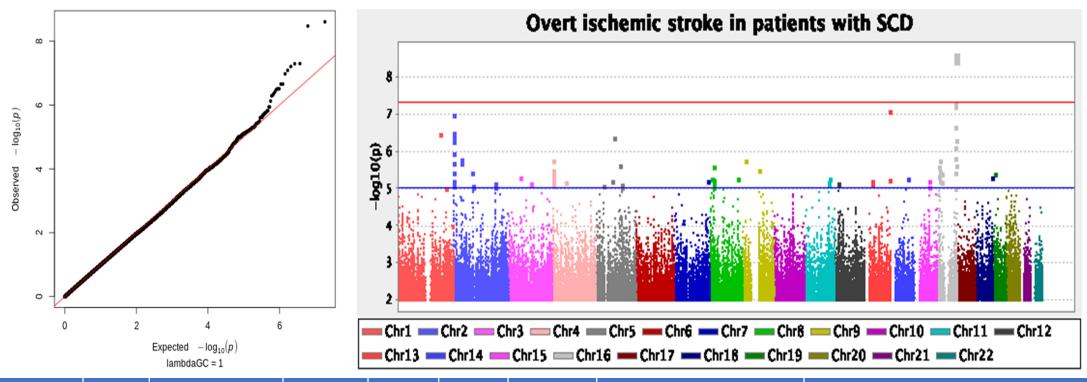


Hb SC (N=76) Genotype reference SCA (N=333) 3.01 (2.1 - 4.36) ⊣ <0.001 ' Female (N=245) Sex reference Male 1.55 (N=164) (1.2 - 2.03) 0.002 ** (N=409) 0.77 (0.6 - 0.99) - ■ 0.038 Alpha_thal # Events: 218; Global p-value (Log-Rank): 5.4518e-12 2.5 3 3.5 4 4.5 5 1.5 2 AIC: 2061.78; Concordance Index: 0.69

Hazard ratios for silent cerebral infarcts

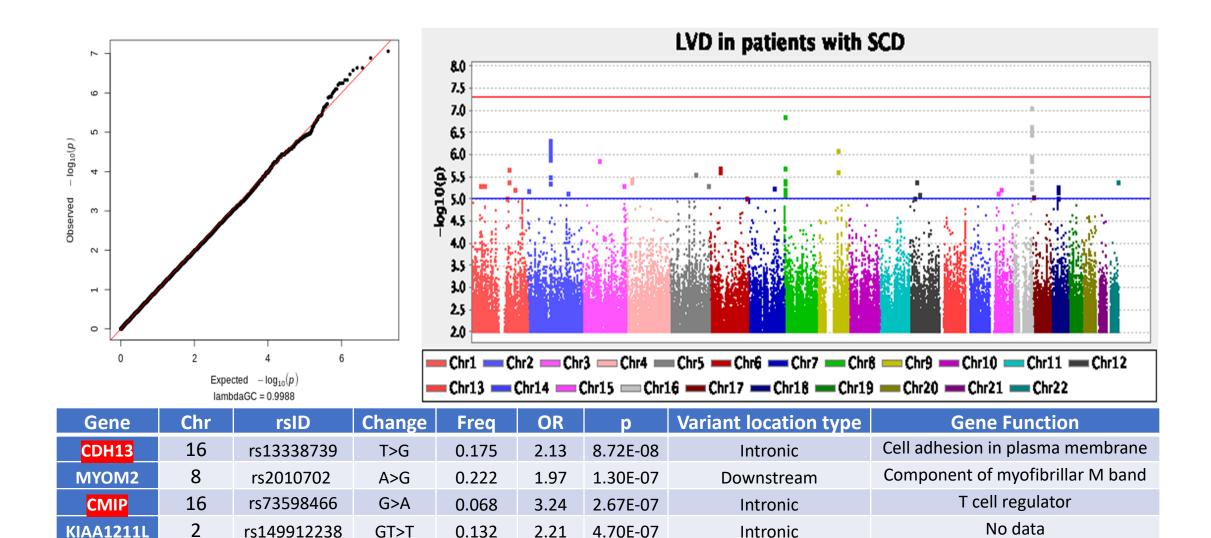
lpha-thal and TCD scans

- Mean difference in TCD velocity 7.17cm/s (95%Cl 4.12-10.2, p=4.02x10⁻⁹)
- Between 4-7.5yrs mean difference was 9.58cm/s, p=6.99x10⁻⁴



Max intracranial velocity of each TCD scan

Genome wide analysis


- Linear mixed modelling
 - Genomic relatedness matrix to account for interrelatedness
 - Age, sickle genotype, gender, and α -thal as covariates
 - Minimum minor allele frequency >0.05

Overt Ischaemic Stroke (n=447)

Gene	Chr	rsID	Change	Freq	OR	р	Variant location type	Gene Function
CMIP	16	rs73598466	G>A	0.068	3.81	2.45E-09	Intronic	T cell regulator
SOX1	13	rs78048662	G>A	0.058	3.36	8.16E-08	Upstream Variant	Transcriptional regulation
FAM110C	2	rs114888422	C>T	0.173	2.1	1.05E-07	TF Binding site	Microtubule organization
VCAN	5	rs73144204	T>A	0.072	2.89	4.39E-07	Upstream Variant	Extracellular matrix adhesin
CDH13	16	rs13338739	T>G	0.175	1.97	4.94E-07	Intronic	Cell adhesion in plasma membrane

Large Vessel Disease (n=494)

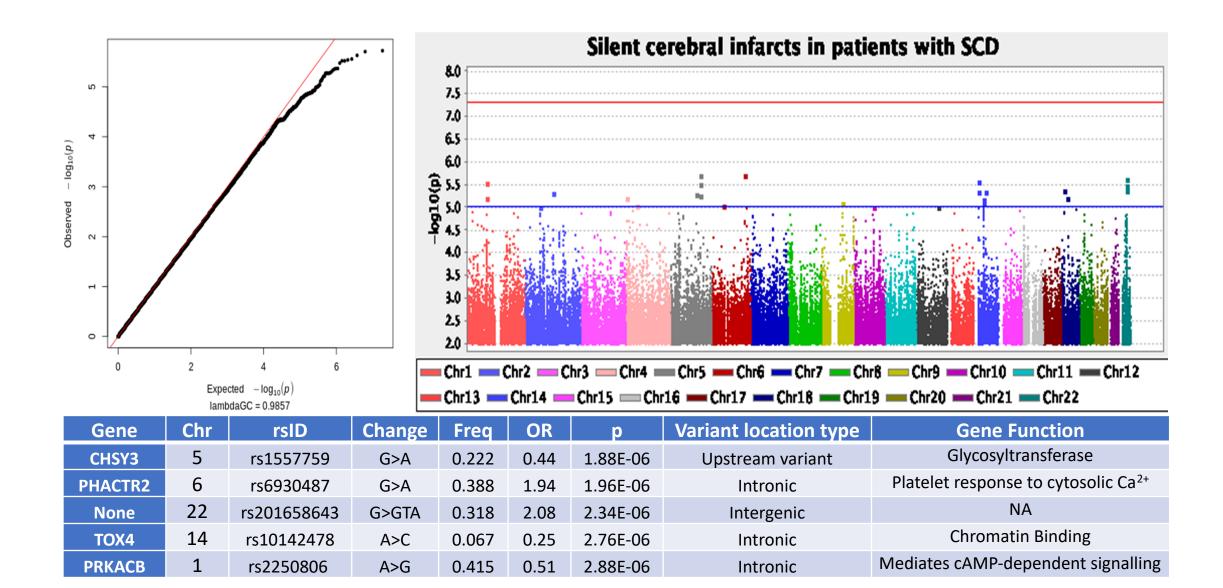
SHC3

8

rs9410292

A>G

0.124

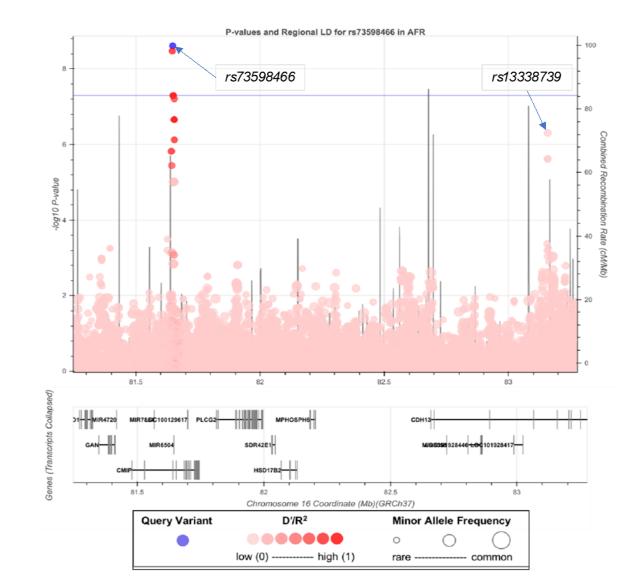

2.26

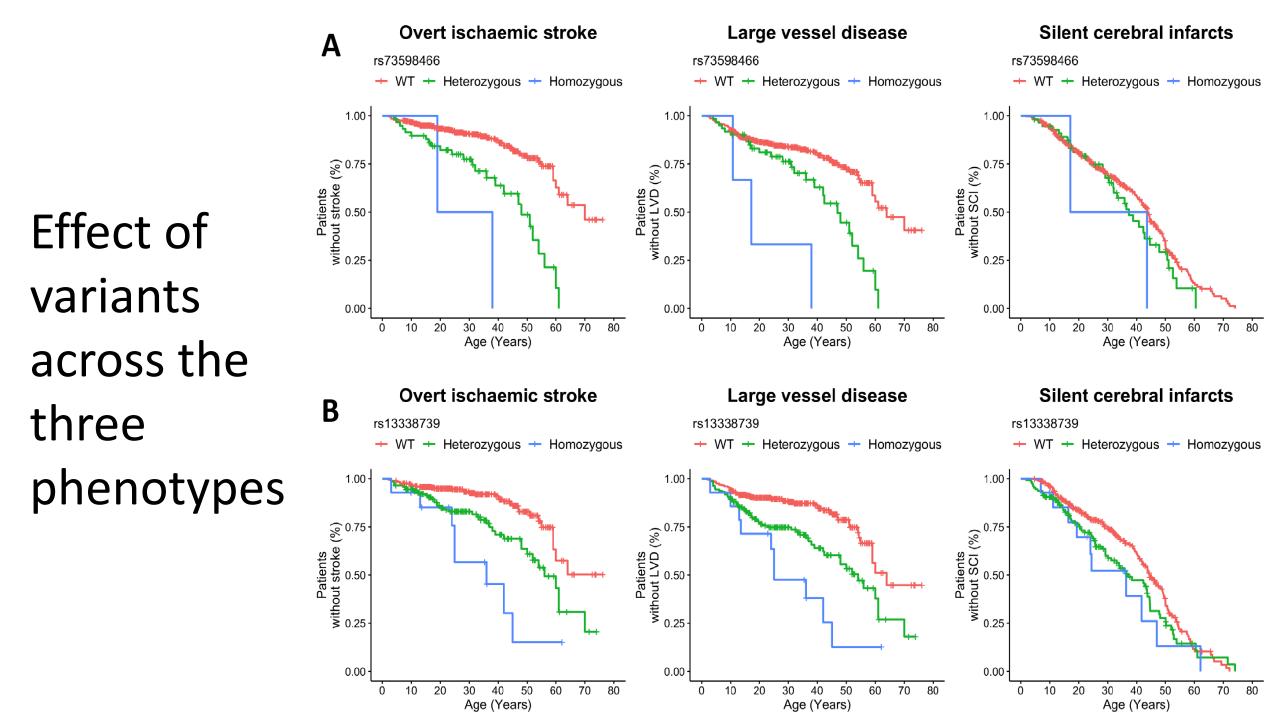
7.97E-07

Intronic

Growth factor signalling in neurons

Silent Cerebral Infarcts (n=403)


Two candidate variants on chr 16


rs73598466 in CMIP

- p=2.45x10⁻⁹ in OIS analysis
- Gene involved in T cell signaling.
- SNPs associated with cardiovascular disease, cholesterol, and type 2 diabetes melitus

rs13338739 in CDH13

- p=8.72x10⁻⁸ in LVD analysis
- Gene involved in vascular endothelial response to oxidative stress

Validation study

- 84 DNA samples from Henri Mondor Hospital, Paris (Bartolucci group)
 - All patients HbSS adults
 - 54 with cerebrovasculopathy, 30 without
- CMIP gene

SNP	Odds Ratio	95% CI	р
rs16955659	1.7	0.61 - 4.74	0.4785845

- Limited sample size
- Validation not yet performed on CDH13

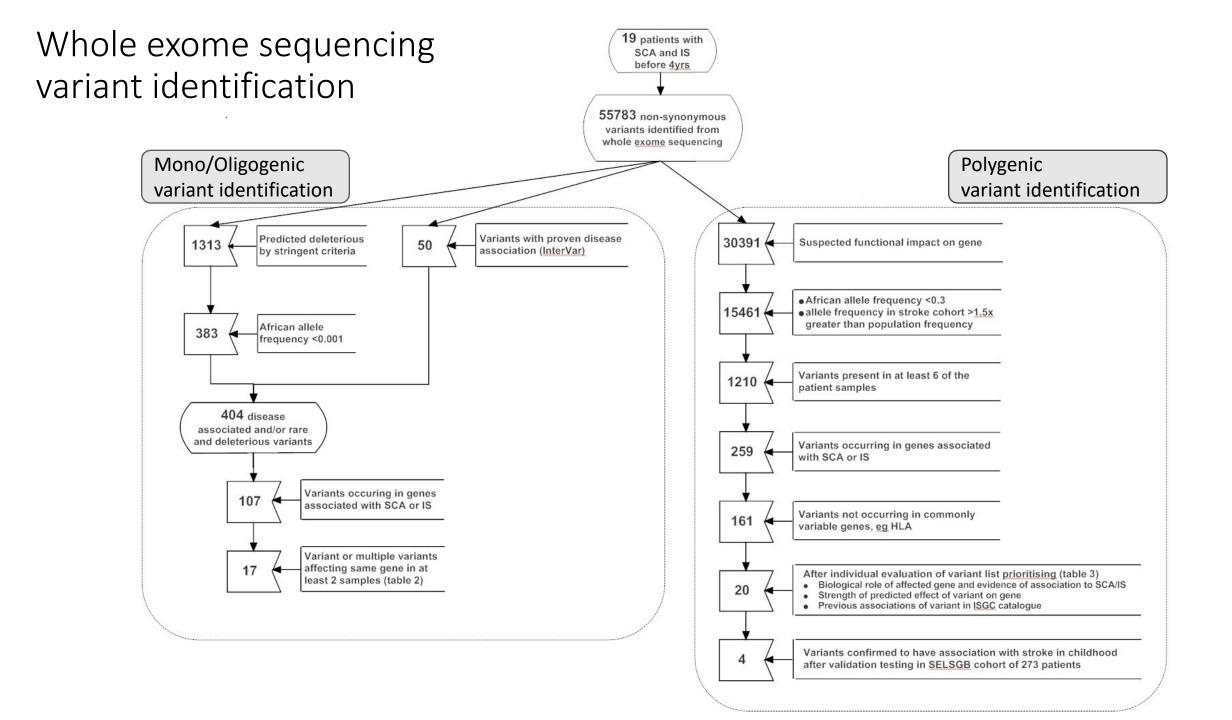
Evaluation of variants identified in previous studies

- 35 variants influencing OIS/LVD
 - Genes: ECE1, TGFBR3, VCAM1, SELP, AGT, GOLGB1, CSF2, ADRB2, LTC4S, BMP6, TNF, ENPP1, SOD2, PON1, BAI1, LPL, TEK. MMP3, NINJ2, ANXA2, ADCY9, IL4R, CCL2, ERG

BMP6: rs267201.A>G (OR=1.26, p=0.039) was associated with OIS, whilst rs449853.C>T (OR=0.4, p=0.005) was protective against OIS
 PON1: rs662.C>T was associated with OIS in childhood (OR=2.70, p=0.007)

- 5 variants influencing SCI
 - Genes: VCAM1, ADAMTS10, NOM1, FRMD4A, CACNB2
 - None showed significant association
- HbF levels, 11 known genetic markers individually and g(HbF)
 ➢ HbF% did not influence SCI (OR=0.80, 95%CI=0.51-1.09, p=0.126)
 ➢ No association of genetic markers, nor g(HbF) with any phenotype

Key findings


- α -thal offers ~1.5x risk reduction against SCI
- CVD in childhood extremely rare with homozygous $\alpha\text{-thal}$
- SCIs are common in adults with HbSC
- No evidence genetic modulators of HbF influences CVD outcomes
- Male sex associated with increased risk of OIS and SCI
- No evidence G6PD deficiency influences CVD outcomes
- CMIP and CDH13 are candidate genes for further investigation
 - Both have roles in lipid metabolism
- Replication of variants in BMP6 and PON1
 - BMP6 possible role in neuroinflammation (TGFβ/SMAD/BMP pathway)
 - PON1 linked to role in atherosclerosis and OIS in general population

Whole exome sequencing in children with stroke at a very young age

- Inclusion criteria
 - HbSS
 - MRI/A evidence of ischaemic stroke + clinical documentation of event having taken place <4yrs of age
- Exclusion criteria
 - Precipitating factor contributing to stroke
- Deletional α -thal genotyping
 - Multiplex PCR performed according to published methods
- Whole exome sequencing
- Analysis of variants using pathway analysis

Clinical features of the very young stroke cohort

- 19 patients recruited to study (from population of about 5000 children)
- Average age of stroke 3.3yrs (2.0-4.0yrs), m=10, f=9
- Most common infarctive territory was middle cerebral artery
- 7 of 17 patients had progressive CVD despite adherence to transfusion programme
- 3 (15.8%) aa/a- (expected frequency of ~38%)
- 4 male patients had G6PD
- Steady state blood results age 1 year(n=10)
- Hb 66 (54-74) g/L
 - Retic% 14.9 (5.9-19.0)%
 - HbF 12.8 (4.1-22.8)%
 - WCC 17.3 (3.1-41)x10⁹/L

Variants identified under a monogenic/oligogenic model

Gene	Number of variants identified	Number of young stroke samples with at least one variant in the gene	Variants SNP ID or AA change	Gene function
CX3CR1	1	8	rs3732379	Leukocyte adhesion and migration
COL7A1	4	4	rs753443085 rs139416346 rs267599859 rs756703259	Extracellular matrix protein
TENM3	3	4	R1793L rs536479740 rs902566447	Regulation of neuronal development
FDFT1	2	2	rs199864384 rs748267738	Cholesterol synthesis
LRP1	2	2	E1626Q P3309L	LDL receptor
TSC2	2	2	rs876659800 G703V	Tuberous sclerosis complex protein
APOE	2	13	rs7412 rs429358	Lipoprotein and omega fatty acid metabolism
G6PD	1	7	rs1050828	NADPH synthesis

APOE variants:

- rs7412 & rs429358 occur in opposition
- define alleles APOE ε2 and ε4 respectively,
 - ε3 is defined by the absence of both
- Strongly linked with dyslipidemia and stroke in general population

Additional lipidaemic genes identified

- LRP1 (LDL-receptor 1)
- FDFT1 cholesterol biosynthesis

Candidate genes identified using polygenic inheritance model

GRCh37 coordinates	SNP ID	Gene	AA Change	MAF in young stroke cohort (gnomAD african MAF)	Odds Ratio (95% CI) determined using SELSGB cohort	p-value
1:183091058	rs2230157	LAMC1	E731K	0.18 (0.10)	0.62 (0.28-1.4)	0.2340
2:169824983	rs11568364	ABCB11	M677V	0.26 (0.17)	0.95 (0.51-1.75)	0.8571
2:216235046	rs6728999	FN1	R2275Q	0.21 (0.12)	1.43 (0.7-2.93)	0.3390
3:39307256	rs3732379	CX3CR1	V249I	0.26 (0.13)	1.15 (0.58-2.28)	0.6864
4:88903774	rs7435825	SPP1	S210N	0.26 (0.15)	0.75 (0.38-1.47)	0.3962
6:31639979	rs9267532	LY6G5B	R176C	0.18 (0.10)	0.94 (0.44-2)	0.8758
10:54531226	rs1800451	MBL2	G57E	0.37 (0.23)	1.46 (0.87-2.46)	0.1554
11:71191817	rs7121106	NADSYN1	P297L	0.26 (0.14)	0.93 (0.5-1.71)	0.8143
11:82564294	rs2229437	PRCP	E133D	0.18 (0.12)	0.98 (0.44-2.19)	0.9676
12:6061675	rs78353028	VWF	T2666M	0.16 (0.07)	1.52 (0.6-3.84)	0.3886
12:6145649	rs57950734	VWF	H817Q	0.21 (0.12)	0.66 (0.31-1.41)	0.2612
13:113773159	rs6046	F7	R413Q	0.21 (0.12)	1.65 (0.86-3.14)	0.1412
15:39874396	rs41515347	THBS1	S24A	0.18 (0.11)	0.83 (0.38-1.82)	0.6455
17:26096597	rs2297518	NOS2	S608L	0.21 (0.12)	2.25 (1.21-4.19)	0.0139
17:40451844	rs2230123	STAT5A	V209A	0.24 (0.07)	2.6 (1.3-5.2)	0.0090
19:11489049	rs35423344	EPOR	P380A	0.32 (0.20)	1.35 (0.81-2.24)	0.2587
19:15272218	rs114447350	NOTCH3	P2074L	0.18 (0.09)	0.92 (0.42-2)	0.8346
19:45411941	rs429358	APOE	C156R	0.34 (0.22)	1.95 (1.13-3.34)	0.0168
X:153764217	rs1050828	G6PD	V68M	0.29 (0.12)	0.83 (0.26-2.52)	0.7410

rs2297518.G>A, NOS2

- OR 2.25, 95%Cl 1.21-4.19, p=0.0139
- rs2230123.T>C, STAT5a
- OR 2.6, 95%CI 1.3-5.2, p=0.0090

rs429358.T>C, APOE

• OR 1.95, 95%CI 1.13-3.34, p=0.0169

Validation of findings in population with strokes at an older age

- Validation of APOE findings in cohort of 832 patients with SCD and stroke
 - ε2: OR 0.97 95%Cl 0.49-1.94, p=0.940
 - ε3: OR 0.59, 95%Cl 0.36-0.97, p=0.038
 - ε4: OR 1.95, 95% CI 1.13-3.34, p=0.016
- ε2ε4 or ε4ε4
 - OR 4.35 (95% CI 1.85-10.0, p=0.0011)

APOE and stroke risk

- APOE alleles ε2ε4 or ε4ε4 confer 4.35x increased risk of ischemic stroke in children with SCA
 - ~10% of sickle population will carry this genotype
 - Alleles known to influence many aspects of human biology
 - Plasma cholesterol levels
 - Omega-3-fatty acid (docosahexanoic acid) metabolism
 - Neuroinflammation (Alzheimers)
 - Associated with stroke risk in general population by large scale GWAS
 - Body of evidence to suggest biologically plausible effect in SCA

Conclusions – Genetic associations

- APOE genotypes ϵ^2/ϵ^4 or ϵ^4/ϵ^4 confer a significantly increased risk of overt stroke occurring in childhood
 - OR=4.35, 95% CI 1.85-10.0, p=0.0011
- Increased risk of stroke also associated with variants in
 - *NOS2*
 - OR=2.25, 95%CI 1.21-4.19, p=0.0139
 - *STAT5a*
 - OR=2.60, 95%CI 1.30-5.20, p=0.009
 - CMIP
 - OR_{OIS}=3.81, p=2.45x10⁻⁹)
 - CDH13
 - OR_{LVD}=2.17, p=8.72x10⁻⁰⁸
- Validation of previously reported genetic associations
 - BMP6
 - *PON1*

Conclusions – Known genetic modifiers

- α -thal protective against all forms of CVD, including SCI
 - Effect only seen in HbSS cohort
 - homozygous alpha thalassaemic appear to be especially protected
- No evidence for influence of HbF levels either by clinical measurement or genetic markers
- Increased risk of CVD with male sex
- No evidence for influence of G6PD deficiency
- Need for larger, multinational studies

Acknowledgements

- King's College London
 - John Brewin
 - John Strouboulis
 - Stephan Menzel
 - Sara El Hoss
 - Amina Nielsen Nardo Marino
 - Sanjay Tewari
- Cambridge University
 - John Gibson
- Robert Debre Hospital
 - Valentine Brousse
- Hopital Henri Mondor
 - Pablo Bartolucci

