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Sickle Cell Disease: The Basics
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http://globin.bx.psu.edu/cgi-bin/hbvar/query_vars3

Acute Lung Injury/Acute Chest Syndrome

* Acute chest syndrome (ACS) is a major concern in sickle cell disease (SCD)
O Number one pulmonary complication
O Leading cause of intensive care admissions

* Number one cause of death in pregnancy in SCD in low-resource settings
1 87% of mortality in a Ghanaian cohort
Asare et al., Am J Hematol 2018

ACS mortality -National Acute Chest Syndrome Study Group

P value
Age (yrs) 0-9 (n=264) 10-19 (n=145) =220 (n=128) <0.001
Mortality Rate (%) <1% 2% 9%

Vichinsky et al., N Engl J Med 342:1855-1865, 2000

* No Targeted therapy
d ACS survival is markedly higher in children
» potential ACS survival factor
O High expression HO-1 promoter variants associate with low risk of ACS
Bean et al., Blood, 2012
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The Heme Infusion Story in SCD

Where to inject sickle mice with purified hemin

Intraperitoneal (i.p.)

~2005
Beneficial effect
Induction of Heme Oxygenase-1
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The Heme Infusion Story in SCD

Infusion of saline Infusion of heme

HEMOGLOBINOPATHIES, EXCLUDING THALASSEMIA Il | NOVEMBER 19, 2010

Acute Chest Syndrome In Transgenic Mouse Models of Sickle Cell Disease Triggered
by Free Heme
Samit Ghosh, PhD, Solomon F Ofori-Acquah, PhD

'.) Check for updates

Blood (2010) 116 (21): 944.

https://doi.org/101182/blood.V116.21.944.944
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JCI The Journal of Clinical Investigation

Extracellular hemin crisis triggers acute chest syndrome in
sickle mice

Samit Ghosh, ..., David Robert Archer, Solomon Fiifi Ofori-Acquah
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Conceptual model of ACS pathogenesis

i/ % Vaso-occlusion

‘Sterile =
Rapidly

progressive ACS

X

- CSSCD
N, Extracellular heme ! Vichinsky
et al., Blood

TLR4/MyD 8 Lo

Ghosh et al., ) Clin Invest, 2013
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Conceptual model of ACS pathogenesis

Vaso-occlusion

‘Sterile

Ghosh et al., ) Clin Invest, 2013

Haptoglobin
Hemopexin

Heme oxygenase-1
TRL4 inhibitors
Anti-P-selectin agents
Nrf2 activators
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CSL Behring
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CSL Behring > Newsroom > 2020 > Orphan Drug Designation Granted for CSL Behring's Investigational Plasma-Derived Hemopexin Therapy for Sickle Cell Disease

Orphan Drug Designation Granted for CSL Behring's

INnvestigational Plasma-Derived Hemopexin Therapy for

Sickle Cell Disease
KING OF PRUSSIA, Pa.

- Both US and European regulators grant special designation

- Phase 1 clinical development underway for CSL889

02 Nov 2020
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ACS survival rate in transgenic sickle

mice phenocopies humans with SCD

a\
v ” ﬁ Continuous monitoring of oxygen saturation and breath rate (2 hours)
emin
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Enhanced heme clearance by young sickle mice
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Children and young mice with SCD have raised plasma

concentration of HO-1 the rate-limiting heme degradation enzyme

Patients with SCD (n=386) Sickle mice (longitudinal)
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s 136 :
£ 60- ! H ° 315- 0.10 I
MY ' s o . o
g:) 40 - ! | s ° . 5’10- i
c i { { . 3 0.05 3
,_'@ 20+ 3
T, t l’ ol ** 0.00
1-5 6-10 11-15 16-20 >20 I T T T

0 2 4 6 8 10
Age (Months)

Age (years)

ANNOVA: All ages, p<0.0001

Control Hb AA adults (17-58 yrs)
HO-1 (ng/ml): 2.3 ¥0.1, n=74
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Inhibition of HO-1 activity increases

ACS lethality rate in young sickle mice

3-4 weeks

Young SS mice: i i
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Stabilization of HO-1 decline improves

ACS survival in adult sickle mice

You;_g fvzenlz;ce: u i Oral gavage (x3 weekly) . i
w R %
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Ghosh et al., Br J Haematol, 2018
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Stabilization of HO-1 decline blocks

heme induced acute lung injury in adult sickle mice

Young SS mice:
3-4 weeks

ui Oral gavage (x3 weekly) .
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Inhibition of HO-1 activity abrogates the protective

effect of Nrf2 activation in ACS in adult sickle mice

Young SS mice:
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Inhibition of HO-1 activity abrogates the protective
effect of Nrf2 activation in ACS in adult sickle mice

Young SS mice:

3-4 weeks
_f H-Y
_\\f .
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Ghosh et al., Br J Haematol, 2018
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Truncated recombinant human HO-1 molecules

First generation Second generation

m 1-261 | 1-261 Fc Fc 1-261 |
1-261 ;inker:(GGGGS),,{
Fc Fc f Fe
Linker:(GGGGS), 1-261 1-261
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8 Pharmacokinetic studies: Wild type CD-1 mice
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Efficacy of first generation truncated
recombinant HO-1 in ACS in adult sickle mice

1-261
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Young SS mice:
212 weeks
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Innovative ACS Therapy: Truncated recombinant human HO-1

Circulating heme oxygenase-1 increases
survival in a preclinical acute chest
syndrome (ACS)model by degrading
extracellular heme, and is thus, a

% |l (argeted therapeutic option for ACS.

- Acute lung injury
g’ f Respiratory distress
' Sudden death

Q —se—— s
*.Iron

Circulating

Hemolysis Heme ‘ .~- Carbon monoxide

Bilirubin
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Hemolysis cytoprotective genes: SickleGenAfrica Network

Sickle Cell Disease Genomics Network of Aftica

SickleGenAfrica

F_
.

Accra | Kumasi | Abuja | Kano | Lagos | DaresSalaam

20th April to 3rd May, 2018
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SickleGenAfrica: community engagement workshops




SickleGenAfrica Network: Patient enrolment (November 2021)

Children (n=3,910) Adults (n=3,108)
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Heme scavenging capacity in the SickleGenAfrica cohort

Ghana cohort (n=2,259)
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Excess Circulating Causes Acute Kidney Injury in

Transgenic SCD Mice but in Control Animals

o AA D035 F o AA-Baseline G 0 SS-Baseline
Kidney Liver e AA-Heme m SS-Heme
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VHVHYV H V H Time after injection of Time after injection of
V: vehicle; H: i.v. hemin FITC-sinistrin (min) FITC-sinistrin (min)

Ofori-Acquah et al., Blood. 2020; 135:1044-48
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RED CELLS, IRON, AND ERYTHROPOIESIS

. . : . Hemopexin
Hemopexin deficiency promotes acute kidney injury in P

sickle cell disease

Solomon F. Ofori-Acquah, ™ Rimi Hazra,* Oluwaseun O. Orikogbo,’ Danielle Crosby,'* Bethany Flage,'* Ezekiel B. Ackah,® Diane Lenhart,’* H b AA H e m e
Roderick J. Tan,? Dario A. Vitturi,®” Vivian Paintsil ® Ellis Owusu-Dabo,® and Samit Ghosh, "% in collaboration with the SickleGenAfrica Network

S

Hb SS

"University of Pittsburgh School of Medicine, “Center for Translational and Interational Hematology, and *Pittsburgh Heart, Lung, and Blood Vascular Medicine
Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; *School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana;
“School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; ‘Renal-Electrolyte Division, Department of Medicine
and "Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA; and "Komfo Anokye Teaching Hospital, Kumasi, Ghana

a -1-microglobulin
Acute kidney injury (AKI) is a major clinical concern in sickle cell disease (SCD). Clinical

evidence suggests that red cell alarmins may cause AKI in SCD, however, the sterile in-
® The ratio of plasma . . X .
A1M to hemopexin flammatory process involved has hitherto not been defined. We discovered that hemopexin

concentration is deficiency in SCD is associated with a compensatory increase in «-1-microglobulin (A1M), \_) KI DN EY
"f“‘i"“d “f’ith AKI resulting in an up to 10-fold higher A1M-to-hemopexin ratio in SCD compared with healthy
biomarkers in SCD. controls. The A1M-to-hemopexin ratio is associated with markers of hemolysis and AKl in
® Enhanced scavenging both humans and mice with SCD. Studies in mice showed that excess heme is directed to the

of circulating heme to kidneys in SCD in a process involving A1M causing AKI, whereas excess heme in controls is
kidney triggers AKI in

transgenic SCD mice.

transported to the liver as expected. Using genetic and bone marrow chimeric tools, we
confirmed that hemopexin deficiency promotes AKI in sickle mice under hemolytic stress. AKl
However, AKI was blocked when hemopexin deficiency in sickle mice was corrected with in-
fusions of purified hemopexin prior to the induction of hemolytic stress. This study identifies acquired hemopexin deficiency
as a risk factor of AKI in SCD and hemopexin replacement as a potential therapy. (Blood. 2020;135(13):1044-1048)

Ofori-Acquah et al., Blood. 2020; 135:1044-48
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Conclusions

* Excess circulating heme causes acute injury to multiple organs in
sickle cell disease mice

* Acquired deficiency of hemopexin in SCD causes a maladaptive
elevation of alpha-1-macroglobulin that promotes delivery of
excess circulating heme to the kidneys, instead of the liver to
cause acute kidney injury during episodes of hemolytic crisis.

* Over 7,000 patients are enrolled with clinical data and biological
samples stored in SickleGenAfrica; a major resource for genomics
studies
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