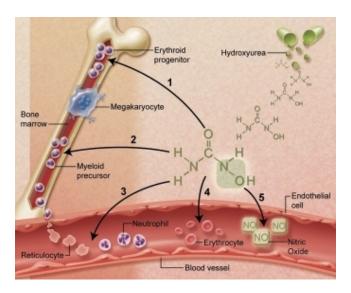
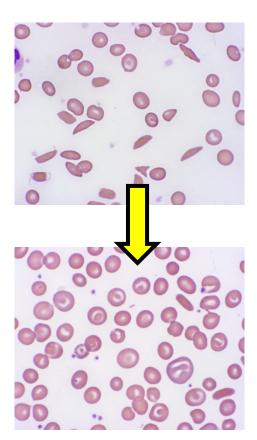


Hydroxyurea Trials in Africa

Russell E. Ware MD PhD Cincinnati Children's Hospital





Hydroxyurea: Multiple Mechanisms of Action

Ware, Blood 2010

HbF induction Myelosuppression Less adhesion Better rheology Nitric Oxide **Endothelial effects**

Sickle Cell Disease in Africa

WHO Reports: 2006 and 2010

AFR/RC60/8 22 June 2010

SICKLE-CELL DISEASE: A STRATEGY FOR THE WHO AFRICAN REGION

Report of the Regional Director

current national policies and plans are inadequate;

Deaths from SCD complications occur mostly in children under five years.

Sickle Cell Disease in Africa WHO Directives (2010)

Targets

Surveillance, healthcare management, national strategic plans

Guiding Principles

Country ownership, fairness, partnership, evidence-based interventions, cost-effectiveness, capacity building

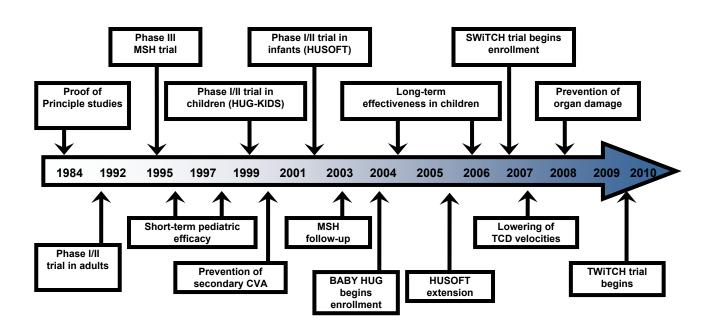
Priority Interventions

Early identification/screening, affordable medications, research promotion

Sickle Cell Disease in Africa WHO Directives (2010)

Targets

Surveillance, healthcare management, national strategic plans


Guiding Principles

Country ownership, fairness, partnership, evidence-based interventions, cost-effectiveness, capacity building

Priority Interventions

Early identification/screening, affordable medications, research promotion

Hydroxyurea Research Trials

WHO Model List of Essential Medicines for Children

 $\underline{http://www.who.int/medicines/publications/essential medicines/en/index.html}$

3rd list

(March 2011)

10.3 Other medicines for haemoglobinopathies

hydroxycarbamide

Solid oral dosage form: 200 mg; 500 mg; 1 g.

Sickle Cell Research Efforts in Africa

Diagnosis

Surveillance

Treatment

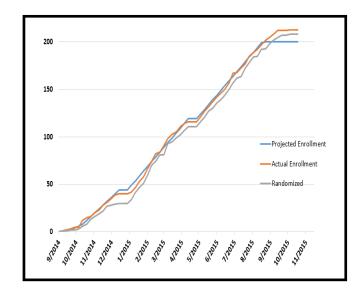
7 countries

ovel use Ormyuroxyurea in African Region With Malaria

(NOHARM, ClinicalTrials.Gov NCT01976416)

Study Overview

Opoka et al, Blood 2017; 130:2585-93

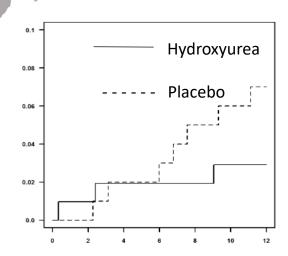

Phase III double-blinded placebo-controlled RCT

Primary Endpoint: Malaria events

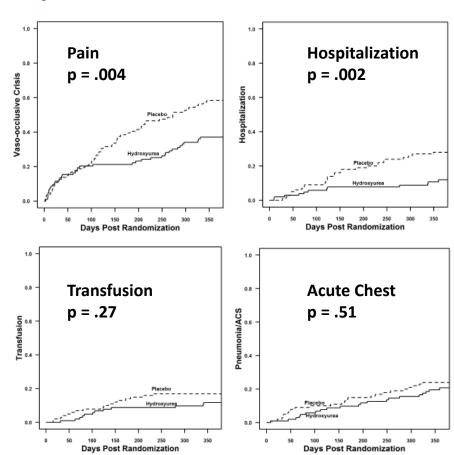
Enrollment: 200 children, age 1-4 years

Fixed hydroxyurea dose (20 mg/kg/day)

No increased risk of malaria Expected treatment benefits Equivalent dose-limiting toxicities


Hematological Effects at Month 12

Laboratory Parameters	Hydroxyurea (N=99)	Placebo (N=99)	p-value*
Hemoglobin (g/dL)	8.7 ± 1.3	7.4 ± 1.0	<0.001
Mean corpuscular volume (fL)	88 ± 9	81 ± 8	<0.001
Fetal hemoglobin (%)	22.9 ± 8.6	10.4 ± 4.8	<0.001
Enrollment age below median	24.1 ± 8.5	12.1 ± 4.8	<0.001
Enrollment age above median	21.4 ± 8.7	8.8 ± 4.2	<0.001
Absolute reticulocyte count (109/L)	247 ± 107	391 ± 122	<0.001
White blood cell count (109/L)	13.7 ± 5.1	18.0 ± 5.1	<0.001
Absolute neutrophil count (109/L)	5.2 ± 2.5	6.6 ± 2.6	<0.001
Platelets (10 ⁹ /L)	371 ± 166	446 ± 143	<0.001
Alanine transferase (ALT, U/L)	19 ± 8	18 ± 8	0.59
Creatinine (mg/dL)	0.32 ± 0.11	0.31 ± 0.08	0.64


Dose-limiting toxicities: 21 on hydroxyurea and 17 on placebo

Clinical Safety and Benefits

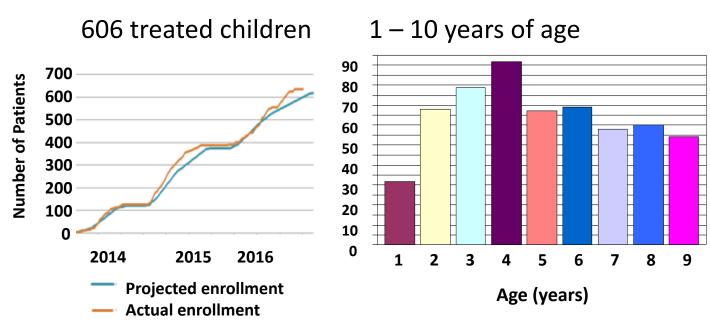
No increased risk of malaria Expected clinical benefits

Realizing Effectiveness Across Continents with Hydroxyurea (REACH) REACH

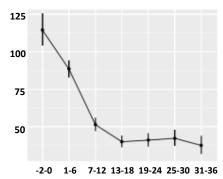
Phase I/II open-label hydroxyurea trial

- Feasibility, Safety, Benefits
- Fixed dose x 6 months, then dose escalation
- Drug donation from BMS

Enrollment: 600 children across 4 sites, age 1-10 years



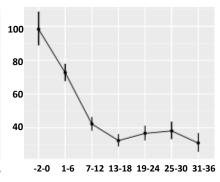
REACH, NCT01966731

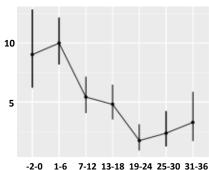


ORIGINAL ARTICLE

Hydroxyurea for Children with Sickle Cell Anemia in Sub-Saharan Africa

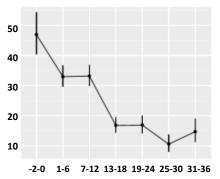
Léon Tshilolo, M.D., Ph.D., George Tomlinson, Ph.D., Thomas N. Williams, M.D., Ph.D., Brígida Santos, M.D., Peter Olupot-Olupot, M.D., Ph.D., Adam Lane, Ph.D., Banu Aygun, M.D., Susan E. Stuber, M.A., Teresa S. Latham, M.A., Patrick T. McGann, M.D., and Russell E. Ware, M.D., Ph.D., for the REACH Investigators*


All Sickle-Related Events

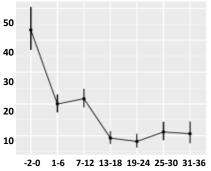

Events per 100 Person-Years

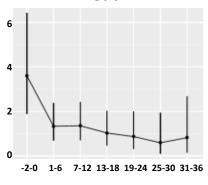
Events per 100 Person-Years

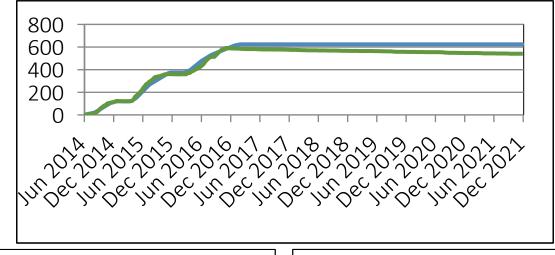
Vaso-Occlusive Pain

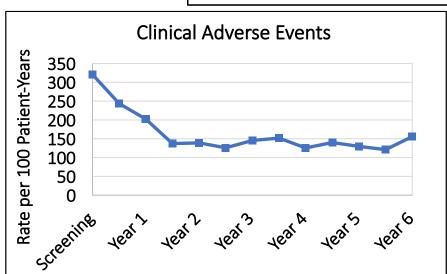


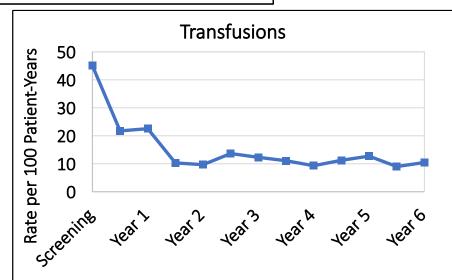
Acute Chest Syndrome



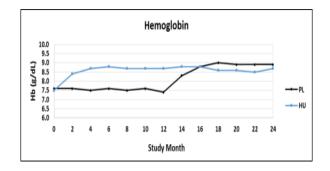

Malaria



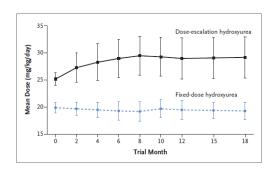

Transfusions


Death

Now at 7 years!



NOHARM MTD Trial

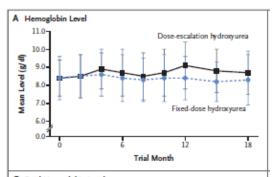

Year 1 randomized → Year 2 open-label

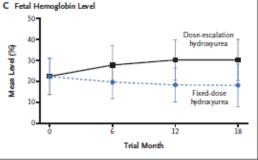
Fixed-Dose versus Escalation Dose to MTD 20 mg/kg/day versus 30 mg/kg/day Risks and benefits of higher dosing

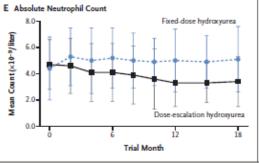
Primary Outcome: Hb ≥ 9.0 g/dL or HbF ≥ 20%

Prediction: More benefits at MTD but more toxicities too

Sickle-related events ↓ 57%


Vaso-occlusive pain ↓ 57%


Pneumonia ↓ 77%


Transfusions ↓ 70%

Hospitalizations ↓ 79%

Dose-limiting toxicities EQUAL

Primary Study Endpoint 86% vs 37%, p<0.001

STUDY HALTED EARLY BY THE DSMB

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Hydroxyurea Dose Escalation for Sickle Cell Anemia in Sub-Saharan Africa

Chandy C. John, M.D., Robert O. Opoka, M.Med., Teresa S. Latham, M.A., Heather A. Hume, M.D., Catherine Nabaggala, M.B., B.S., Phillip Kasirye, M.Med., Christopher M. Ndugwa, M.Med., Adam Lane, Ph.D., and Russell E. Ware, M.D., Ph.D.

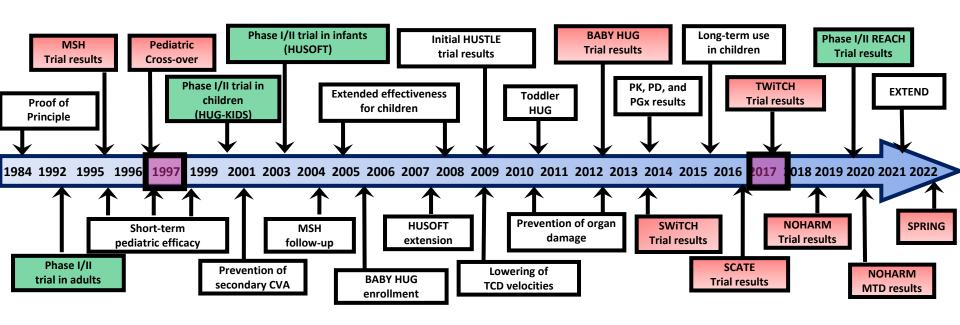
NEJM 2020; 382:2524-2533

SPHERE

Primary stroke prevention trial
TCD screening of 200 children in northwest Tanzania
Hydroxyurea with dose escalation
Endpoints: Stroke, TCD velocities

Emmanuela Ambrose MMED – local PI, ASH Global Research Award Luke Smart, MD

SPRING Results Abdullahi et al, Lancet Haematology 2022;9;26-37


		Low-Dose Hydroxyurea	Moderate-Dose Hydroxyurea	IRR	р	
	Dose (mg/kg/day)	10.8	20.6	-		
•	Stroke (%)	2.75	4.50	0.62	0.77	
	Death (per 100 pt-years)	3.98	1.92	2.08	0.19	
•	Hospitalization (per 100 pt-years)	27.43	16.08	1.77	0.007 1	
	Vaso-occlusive pain	15.51	9.19	1.69	0.055	
	Acute Chest Syndrome	3.18	0.77	4.15	0.097	
	Malaria	19.89	16.08	1.62	0.065	
•	Normalized TCD Velocity (%)	29	40			
	Hb ≥ 9.0 g/dL or HbF ≥ 20% (%)	29	67			
	Median HbF increase (%)	1.9	10.0			

Hydroxyurea for SCA: ~40 Years of Experience

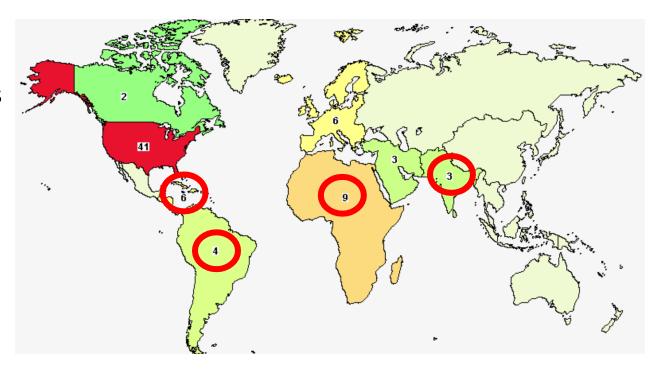
Safe and Effective in all Ages

Sickle Cell Disease in Africa

WHO Progress Report: 2020

AFR/RC70/INF.DOC/3 30 July 2020

ORIGINAL: ENGLISH


REGIONAL COMMITTEE FOR AFRICA

Member States should: (a) Allocate to the SCD programme a budget that is commensurate with the national burden for screening, diagnosis, treatment, surveillance, and research; (b) Include hydroxyurea in the National Essential Medicine List and ensure its availability

WHO and partners should: (a) Engage with partners and national programmes to investigate the barriers to accessing hydroxyurea with a view to negotiating a reduced and affordable price; (b) Ensure that SCD remains high on national, regional and global health agendas through fostering collaborations and partnerships on SCD

Current Global Hydroxyurea Research

CT.gov, PANCTR, WHO
409,120 in 220 countries
51 SCD and hydroxyurea
Only 9 in Africa

What are some remaining questions?

Safety and Efficacy → Implementation

Dosing and Monitoring

Low-dose, Fixed-dose, Optimal dose

PK-guided individualized dosing → Smart at 1700

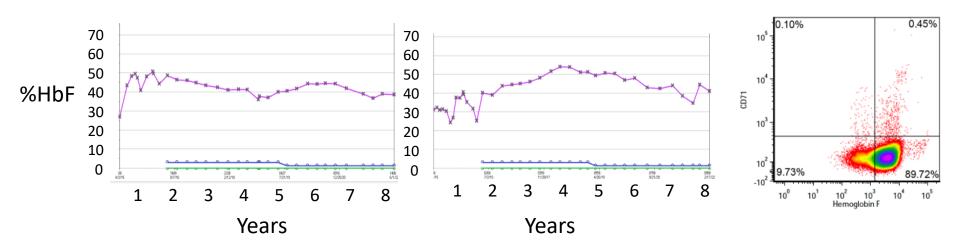

Future Directions

Reduction in Malaria

Reduction in Transfusions → ADAPT, Opoka, Power-Hays

HbSC disease → PIVOT: Segbefia, Dei-Adomakah, Smart

Long-term effects


Long-Term Use: Safe & Effective

Can hydroxyurea achieve 'curative' levels of HbF?

The 30% HbF target is often called 'curative'
Pharmacokinetic-guided hydroxyurea dosing
Start at 6-12 months of age and use optimal dosing

Research in Africa: Avoiding Exploitation

Luzzatto Challenge

Global Tithe

Acknowledgments

Cincinnati Children's Hospital

Arnie Strauss Tina Cheng Alexander Vinks Luke Smart

Ken Setchell Min Dong

Alex Power-Hays Anu Marahatta

Thad Howard Katie McElhinney

Susan Stuber Teresa Latham

Christine Briscoe Arielle Hernandez

North American Co-Investigators

Robert Adams

Chandy John

Patrick McGann

Heather Hume

Banu Aygun

George Tomlinson

African Co-Investigators

Jane Ruth Aceng

Robert Opoka

Brígida Santos

Léon Tshilolo

Tom Williams

Peter Olupot-Olupot

Emmanuela Ambrose

Cathy Segbefia

Yvonne Dei-Adomokah

Caribbean Co-Investigators

Marvin Reid

Angela Rankine-Mullings

Rosa Nieves

Rafael Mena

Funding Sources

Cincinnati Children's Research Foundation

