SAFETY : CURRENT DATA AND CLUES TO IMPROVE IT

Marina Cavazzana, MD, PhD

June 18th 2022 4th Global Congress on Sickle Cell Disease

ORGANIZATION AND REGULATION OF GLOBIN GENES

2

Overview of gene therapy clinical protocol

SEVERE SCD SUBJECT 1204: EQUAL RATIO OF ANTI-SICKLING HEMOGLOBIN (HBAT87Q + HBF) AND HBS BY 9 MONTHS

CLINICAL TRIALS FOR B-HEMOGLOBINOPATHIES (LV)

Table 1. Gene therapy clinical trials for TDT and SCD patients

	Trial number	Phase	Sponsor	Site	Start date/ recruitment status	Number of patients	Vector and transgene (nuclease and DP name)	Cell source	Conditioning	DP administration	Last update (www. clinicaltrials. gov)	
Γ	β-Thalassemia	115		-	6			0.005 000				Π
	LG001	1/2	bluebird bio	France	September 2006/ completed	2*	HPV569 (β ^{κ-τανο} -globin)	G-CSF mPBCs or BM	Myeloablative (busulfan)	IV	NA	
	NCT01639690	1	Memorial Sloan Kettering Cancer Center	United States	July 2012/active, not recruiting	4	TNS9.3.55 (β^-globin)	G-CSF mPBCs	Nonmyeloablative (busulfan 8 mg/kg)	IV	6 June 2018	
	NCT02151526 (HGB205)	1/2	bluebird bio	France	July 2013/active, not recruiting	4	BB305 (β ^{≁τa∞} -globin)	G-CSF + plerixafor mPBCs	Myeloablative (busulfan)	IV	31 January 2019	
	NCT01745120 (HGB204)	1/2	bluebird bio	United States, Australia, Thailand	August 2013/ completed	18	BB305 (β^™-globin)	G-CSF + plerixafor mPBCs	Myeloablative (busulfan)	IV	8 May 2019	
	NCT02453477	1/2	IRCCS San Raffaele	Italy	May 2015/active, not recruiting	10	GLOBE (βA-globin)	G-CSF + plerixafor mPBCs	Myeloablative (thiotepa + threosulfan)	Ю	4 May 2018	
	NCT02906202 (HGB207)	3	bluebird bio	United States, France, Germany, Greece, Italy, Thailand, United Kingdom,	July 2016/recruiting	23 (estimated)	BB305 (β^₊⊤a∞_globin)	G-CSF + plerixafor mPBCs	Myeloablative (busulfan)	IV	31 January 2019	
	NCT02906202 (HGB212)	3	bluebird bio	United States, France, Germany, Greece, Italy, Thailand, United Kingdom	June 2017/recruiting	15 (estimated)	BB305 (β^₊⊤≉∞-globin)	G-CSF + plerixafor mPBC	Myeloablative (busulfan)	IV	31 January 2019	
	NCT03432364	1/2	Sangamo Therapeutics and Bioverativ Therapeutics	United States	February 2018/ recruiting	6	ZFN (ST-400)	mPBCs	Myeloablative (busulfan)	IV	4 February 2019	
	NCT03655678	1/2	Vertex Pharmaceuticals and CRISPR Therapeutics	Gemany, United Kingdom	September 2018/ recruiting	12 (estimated; may be expanded to 45)	CRISPR/Cas9 (CTX001)	CD34+ human HSPCs (mobilization: NA)	Myeloablative (busulfan)	IV	3 May 2019	
Г	SCD											
	NCT02151526 (HGB205)	1/2	bluebird bio	France	July 2013/active, not recruiting	3	BB305 (β≁™⊃-globin)	BM	Myeloablative (busulfan)	IV	31 January 2019	
	NCT02186418	1/2	Children's Hospital Medical Center, Cincinnati	United States, Jamaica	July 2014/recruiting	10	sGbG (γ-globin)	BM and plerixafor mPBCs	Reduced intensity conditioning (melphalan 140 mg/m ² BSA)	IV	6 May 2019	
	NCT02247843	1	University of Califomia Children's Hospital, Los Angeles	United States	July 2014/recruiting	6	βAS3-FB (β ⁴⁵³ -globin)	ВМ	Myeloablative (busulfan)	IV	29 March 2019	
	NCT02140554 (HGB206)	1	bluebird bio	United States	August 2014/ recruiting	50 (estimated; 3 groups [A, B, C])	BB305 (β≁™∞-globin)	BM (A and B) plerixafor mPBCs (C)	Myeloablative (busulfan)	IV	20 May 2019	
	NCT03282656	1	David Williams, Boston Children's Hospital	United States	February 2018/	7	BCH_BB-LCR shRNA(miR)	Plerixafor mPBCs	Myeloablative (busulfan)	IV	24 May 2018	
	NCT03745287	1/2	Vertex Pharmaceuticals Incorporated and CRISPR Therapeutics	United States	November 2018/ recruiting	12 (estimated; may be expanded to 45)	CRISPR/Cas9 (CTX001)	NA	Myeloablative (busulfan)	IV	3 May 2019	
		-								-		-

BM, bone marrow; BSA, body surface area; CRISPR, clustered regularly interspaced short palindromic repeat; DP, drug product; G-CSF, granulocyte-colony stimulating factor; IO, intraosseously; mPBC, mobilized peripheral blood cell; NA, not av short hairpin RNA; ZFN, zinc-finger nuclease.

*P1 failed to engraft and received the backup cells.

HGB-206 GROUP C: MEDIAN HBS ≤ 50% AT ≥ 6 MONTHS POST LENTIGLOBIN TREATMENT

SICKLE CELL DISEASE GENE ADDITION

Phase I/II + Phase III Gene trials

n	>60 (1 DCD)
OS	98% (1 DCD) + several SAE recently reported
EFS	75%(around 50% HbS)

- No information available on the follow-up of patients with vascular problems / stroke and priapism: stop of progression
- Heterozygote after gene therapy is not a true carrier
- Some concerns on safety issues just reported :all clinical trials on hold

OPTIMIZATION OF LV-BASED GENE ADDITION THERAPIES

Lentiviral vector

Weber, MTMCD 2018

Megane Brusson

Sophie Ramadier

Vasco Meneghini

- Increase therapeutic β-like globin expression
- Reduce βS-globin expression (SCD)

LV-BASED Gene therapy for SCD (BLUEBIRD BIO AND DREPAGLOBE TRIALS)

Ribeil, NEJM, 2017); Magrin Nat Med, in press. BBB trial

Miccio, PNAS, 2008, Weber, MTCMD, 2018; DREPAGLOBE trial

GLOBE-AS3 WITH MIRNA ANTI-HBS

VECTOR: bifunctional lentiviral (LV) vectors to **efficiently transduce HSPCs and to prevent HbS production in their erythroid progeny** by the combination of an antisickling β -globin and a miRNA anti-sickle β S-globin.

ATMP: Autologous CD34+ cells transduced ex vivo by a bifunctional GLOBE-AS3 lentiviral vector with a micro-RNA (miRNA) targeting specifically the endogenous sickle β S-globin gene.

GLOBE-AS3 WITH MIRNA ANTI-HBS

BIFUNCTIONAL LV MEETS THE EFFICACY REQUIREMENTS

incorporation in Hb and ameliorates red blood cell sickling

BIFUNCTIONAL LV MEETS THE SAFETY REQUIREMENTS (2)

Adult HSPCs from 3 SCD patients (including 2 patients of the DREPAGLOBE trial)

Progenitor assay

Integration site analysis (1 healthy donor)

🔲 intergenic 🔲 exonic 🔄 intronic

βAS3-LV βAS3m/miR7m-LV Standard LV integration profile

The βAS3m/miR7m LV does not affect HSPC clonal growth and differentiation towards erythroid and granulocytemonocyte lineages

Confidential

SAFETY EVENTS UPDATE

	Patient 1303*	Patient 1301	Patient 1351
Reported	2018	Feb 2021	Feb 2021
Age	42	31	20
HGB206 group	А	А	C
Genotype	S/S	S/S	S/S, alpha thal trait
Diagnosis	MDS to AML, death	AML	MDS
Cytogenetics and NGS	Monosomy 7, abnormal 19p, RUNX1 (NP_001745.2:p.Asp198 Gly),PTPN11(NP_002825.3:p.Phe71L eu), KRAS NP_203524.1:0.Gly12Ala	Monosomy 7, partial loss of 11p, RUNX1 Exon 5 stop gained p.A149fs, PTPN11 Exon 3 missense: p.A72V	Trisomy 8
Timing	3.5 years after treatment	5.5 years after treatment	6 months after treatment
Vector	Vector not in blasts	Vector in blasts, suspect insertion at VAMP4	No blasts or dysplastic cells reported
Causality	Possibly busulfan	Unlikely related to bb1111	MDS diagnosis changed to transfusion dependent anemia

*prior case of MDS in HGB-206

STATE OF ART: RETROVIRAL VECTORS AND GENOTOXICITY

	γ-retrovirus vector	S/N-y	S/N-lentivirus vector
Integration	++	++	++
Cell cycle dependent	+++	+++	+/-
Integration rules	Semi-random promoter oncogene	Semi-random ↘↘ oncogene	Random No preference X regulatory regions
Patients treated	≈ 110	9	> 350
SAE / insertional mutagenisis	20/110	0	X-ALD (n=3) Retroviral promoter (MND)

LENTIVIRUS VECTORS AND GENOTOXICITY

• Strictly dependent on the vector construction

• Mandatory to avoid:

• Use of large insulators on LTR

• Use of strong or ubiquitous γ-retroviral promoter (cf MND / Bluebird Bio)

• VCN:

FDA recommendations
 ANSM recommendations

 \neq 1-3 for caution

Clinical and Biological data in favour of accumulation of dangerous hits in SCD -BM cell

SICKLE CELL DISEASE AND HEMATOPOIESIS: MUTATIONS, CLONAL EVOLUTION, MDS AND AML

Role of the disease ?

- Chronic Hypoxia and ineffective erythropoiesis
- Endothelium damage
- Chronic acidosis
- Chronic Inflammation
- Chronic Hemolysis /stress erythropoiesis
- Genetic factors*

*Modified from Bick, BioRxIv 2019

Role of the treatments?

- Transfusion and iron overload
- CR and HSCT: influence of mixed chimerism or rejection
- Gene Therapy?

TRANSCRIPTOMIC PROFILE OF PLERIXAFOR-MOBILIZED SCD HSPCs

HD: healthy donor, BM : bone marrow, SCD: sickle cell disease, Pler: Plerixafor, Filg: Filgrastim

CONSEQUENCES ON BMC OF INFLAMMATION AND HYPOXIA

- 1. Clonal hematopoiesis
- 2. Decreased number of HSC: poor stem cell reservoir > exhaustion > failure to engraft
- 3. Increase number of precursor cells committed to erythroid and myeloid lineages
- 4. Trained immunity: long term functional reprogramming of innate immune cells

CLINICAL CONSEQUENCES OF CHIP IN PATIENTS UNDERGOING HSCT (AUTO + ALLO)

• Affect stem cell collection and engraftment following auto HSCT

- Presence of CHIP is associated with adverse outcomes: 10 years of cumulative evidence of therapy-related neoplasm 14% vs 4.3%; OS 61% vs 19%
- CHIP and Allo HSCT: Donor: pre-existing or during HSC
 - Host: mixed chimerism
- VAF > 0.2% High risk of relapse (VAF 5.9% in 16% of donors)

Baseline *TP53* mutations in adults with SCD developing myeloid malignancy following hematopoietic cell transplantation

Jack Y. Ghannam,^{1,*} Xin Xu,^{2,*} Irina Maric,³ Laura Dillon,¹ Yuesheng Li,⁴ Matthew M. Hsieh,² Christopher S. Hourigan,^{1,†} and Courtney D. Fitzhugh^{2,†}

VAF DETECTION DURING SCREENING BEFORE GT ENROLLMENT (18 YRS – BONE MARROW CELLS)

ASSESSMENT OF CLONAL HEMATOPOIESIS, TELOMERE LENGTH AND INFLAMMATION IN SICKLE CELL DISEASE

• SAE (AML, MDS) after in gene therapy in SCD patients \rightarrow need of safety screening

100 severe SCD patients eligible to gene therapy (12 - 50 yrs)

Clonal hematopoiesis

NGS panel, 38 most frequently mutated genes in CH BioNano technology

> Predictive model of risk for hematological malignancies

Telomere lenght Flow FISH

- Hôpital Universitaire Necker Enfants Malades, Paris, France
- Paris Descartes Sorbonne Paris Cite University, Imagine Institute
 - L. Joseph
 - S. Manceau
 - F.Lefrere
 - O. Hermine
 - S. Blanche
 - M. De Montalembert
 - P. Bourget
 - B. Neven
 - Elisabeth McIntyre

E. Magrin M. Semeraro N. Hebert A. Miccio A. Chalumeau W. El Nemer P. Bartolucci

- C. Lagresle
- E.Six
- Wassim Asnafi

Aknowledgements

- CEA, Institut of Emerging Diseases and Innovative
 Therapies and University of Paris-Sud, Fontenay-aux Roses, France (and also Brigham & Women's Hospital and
 Harvard Medical School, Boston, MA, USA, and Mahidol
 University and Ramathibodi Hospital, Bangkok, Thailand)
 - Philippe Leboulch
 - E. Payen

0

• Y. Beuzard

Centre Hospitalier Intercommunal de Créteil (CHIC) C. Pondarre

bluebird bio, Inc.
J.A. Ribeil
L. Sandler
S. Soni

Centre Hospitalier de Nice Sophia-Antipolis F. Monpoux

Most importantly, we wish to thank all the patients and their families