Intelligence.
Beautifully engineered.
1896 Olympic Games, Athens – 100m
2016 Olympic Games, Rio – 100m
In elite sport the smallest edge makes the difference, and the best teams exploit this to outlearn their rivals.
Arms race in innovation

Data has emerged as a fundamental element of competitive advantage.
Why now?

Better algorithms
Better GPUs
More data
Cloud

8All content copyright © 2017 QuantumBlack, a McKinsey company
2018 © The MedTech Forum. All rights reserved - Reproduction in whole or in part is prohibited.
2018 © The MedTech Forum. All rights reserved - Reproduction in whole or in part is prohibited.
2018 © The MedTech Forum. All rights reserved - Reproduction in whole or in part is prohibited.
2018 © The MedTech Forum. All rights reserved - Reproduction in whole or in part is prohibited.
2018 © The MedTech Forum. All rights reserved - Reproduction in whole or in part is prohibited.
2018 © The MedTech Forum. All rights reserved - Reproduction in whole or in part is prohibited.
2018 © The MedTech Forum. All rights reserved - Reproduction in whole or in part is prohibited.
2018 © The MedTech Forum. All rights reserved - Reproduction in whole or in part is prohibited.
2018 © The MedTech Forum. All rights reserved - Reproduction in whole or in part is prohibited.
2018 © The MedTech Forum. All rights reserved - Reproduction in whole or in part is prohibited.
Technology revolutions tend to involve an important activity becoming much cheaper
Machine intelligence radically reduces cost of discovery
We expect **Augmented Intelligence** to be applied in waves...

<table>
<thead>
<tr>
<th>Wave 1</th>
<th>Wave 2</th>
<th>Wave 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply to things we’ve always done</td>
<td>Apply to things we couldn’t do before</td>
<td>Reimagine the core operating process</td>
</tr>
<tr>
<td>• Weather</td>
<td>• Autonomous vehicles</td>
<td></td>
</tr>
<tr>
<td>• Sales</td>
<td>• Hospital operations</td>
<td></td>
</tr>
<tr>
<td>• Maintenance</td>
<td>• Real-world evidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Product development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organization design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Business model</td>
<td></td>
</tr>
</tbody>
</table>
Early adopters become serial adopters

AI Index

<table>
<thead>
<tr>
<th>Overall AI index</th>
<th>MGI digitization index</th>
<th>Assets</th>
<th>Usage</th>
<th>Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Depth of AI technologies</td>
<td>AI spend</td>
<td>Supporting digital assets</td>
</tr>
<tr>
<td>High tech and telecommunications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automotive and assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial services</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resources and utilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media and entertainment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer packaged goods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation and logistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional services</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health care</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building materials and construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel and tourism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relatively low | Relatively high
Applying this in the real world.
Re-engineering the product development process
Data offers different perspectives
The car as a network
Explanatory model to understand drivers of performance...

Explanatory
Modelling technique using Linear Regression to arrive at insight.
...which, in turn, allow precise interventions

- One such factor we uncovered was the significance of aligning the way designers and engineers communicate, and work together.
- Because engineers were not waiting for final design sign off before iterating components, time and money was being lost.
Reimagining the core operating system of the firm

<table>
<thead>
<tr>
<th>Product Development</th>
<th>Production</th>
<th>Launch</th>
<th>After-Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>11%</td>
<td>25>80</td>
<td>5/6</td>
</tr>
<tr>
<td>Reduction in time-to-market</td>
<td>Reduction in programme costs</td>
<td>Uplift in 'right-first-time' quality</td>
<td>Not touched</td>
</tr>
<tr>
<td>25 data systems</td>
<td>+ 14 data systems</td>
<td>+ 4 data systems</td>
<td>Understanding root cause of warranty claims</td>
</tr>
</tbody>
</table>
The opportunity in MedTech.
Advanced analytics can significantly improve efficiency and drive impact across the value chain in MedTech

Example Of Applications (not exhaustive)

A R&D and clinical trials efficiency
Collect medical data directly from trial participants in their homes and conduct analysis to speed up device performance evaluation, use machine learning to optimize R&D team effectiveness.

B Field force effectiveness
Forecast future scenarios of customer demand to set the right level of inventory stock and product mix.

C RWE
Identify clinically and commercially relevant patient segments leveraging real world data.

D Predictive maintenance
Accurately estimate potential device break-down and analyze most effective preventive action based on historical performance data.

E Beyond product services
Develop core services beyond the product, by use of machine learning and augmented reality (e.g., to improve utilization/throughput, accuracy of procedure forecasting, personalized medicine).

F Pricing
Use machine learning for deal target pricing.

G Field force effectiveness
Optimize sales deployment by predicting propensity to buy of potential leads based on real world data.

H Overdue payment reduction
Automate customer order and invoicing process to shorten processing time and proactively prevent payment overdue.

I People analytics
Use big data and machine learning for core HR processes.

J Procurement excellence
Forecast future scenarios of customer demand to set the right level of inventory stock and product mix.

K Yield optimization
Analyze historical data to identify most critical manufacturing parameters and utilize machine learning to reach optimum process conditions.

L Pricing
Use machine learning for deal target pricing.

M Procurement excellence
Forecast future scenarios of customer demand to set the right level of inventory stock and product mix.

N Yield optimization
Analyze historical data to identify most critical manufacturing parameters and utilize machine learning to reach optimum process conditions.

O Procurement excellence
Forecast future scenarios of customer demand to set the right level of inventory stock and product mix.

P Yield optimization
Analyze historical data to identify most critical manufacturing parameters and utilize machine learning to reach optimum process conditions.

Q Procurement excellence
Forecast future scenarios of customer demand to set the right level of inventory stock and product mix.

R Yield optimization
Analyze historical data to identify most critical manufacturing parameters and utilize machine learning to reach optimum process conditions.

S Procurement excellence
Forecast future scenarios of customer demand to set the right level of inventory stock and product mix.

T Yield optimization
Analyze historical data to identify most critical manufacturing parameters and utilize machine learning to reach optimum process conditions.

Illustrative impact we have seen

- **10%** shorter time to market
- **50%** yield improvement
- **15-20%** reduced inventory holding cost
- **10%** increase in revenue
- **10%** reduction in overdue payments
- **15-20%** lower maintenance costs
- **12%** improvements of customers’ utilization
- **10-15%** reduction in trial costs
- **5-10%** procurement savings
- **4-7%** higher price
- **50%** reduction in high performing employee churn
- **18-27%** lower maintenance costs
- **10%** reduction in overdue payments
- **10-15%** reduction in trial costs
- **5-10%** procurement savings
- **4-7%** higher price
- **50%** reduction in high performing employee churn
A Predict what is driving speed of enrollment, costs and quality of clinical trials

300m
Integrated 300 million data entries of so far disconnected internal trial data (Trial Management, Quality, Finance, HR, etc.) with external data (Rx/claims, publications, etc.) into a rich data lake and used predictive algorithms to forecast site-level patient recruitment and quality events.

10-20%
Faster enrollment

10-15%
Lower trial costs

5x
Better targeting of site level audits
Understanding what is driving sales performance

- 20% Integrated data sets that the firm had never previously linked, including many it had never used at all, such as CRM, e-mails, and patient diagnostic data.
- 25% Faster initiation of first sale.
- 10% Increase in sales from avoiding dormant accounts.
Identify clinically and commercially relevant patient segments in which drug has better efficacy and cost profile than competitors

- **65m**
 - Detailed 10 years of EMR & claims data with 65mn patients
 - Available now, & everyone can access
 - Replicated findings from previous research to show robustness of the approach and data

- **58%**
 - Identified 4 clinically relevant patient segments where drug meaningfully outperforms competitors – segments together cover 58% of patient population
 - Live interactive tool deployed for cross-functional team to explore patient segments and build actionable clusters
Efficacy: • All adverse events • Effective adverse events

Bubble size
- No. of Drug B patients
- Total cost per adverse event
- Incremental adverse-event-related cost per patient

Legend
- Max: 88.6%
- Mean: 40.7%
- Min: 11.3%

All Patients

<table>
<thead>
<tr>
<th>No. of patients - Drug B</th>
<th>Incurred incremental cost (pppy)</th>
<th>Incurred cost (per adverse event)</th>
<th>Adverse event rate differential (pppy)</th>
<th>Adverse event rate by efficacy (pppy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total in analysis</td>
<td>Total: -$1.30</td>
<td>Total cost: $1,358</td>
<td>Difference: -0.11</td>
<td>Effective Drug B: 10%</td>
</tr>
<tr>
<td></td>
<td>Additional cost: -$1.30</td>
<td>Disorder marked cost: $40</td>
<td>Drug A: 9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disorder marked cost: $0.20</td>
<td>Adverse event marked cost: $178</td>
<td>Drug B: 90%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perc. in segment: 100.0%</td>
<td></td>
<td>Ineffective Drug B: 90%</td>
<td></td>
</tr>
</tbody>
</table>

Segment
- Drug A outperforms Drug B, and performs better than average

- Male patients
- Obese patients
- Patients aged >=53 and <61 years at treatment start
- Patients aged >=61 and <70 years at treatment start
- Patients aged <53 years at treatment start
- Patients in regions with >=2.3% and <2.65 college education rates
Reducing service cost of MRI scanners with analytic troubleshooting & condition based maintenance

- Predicts common service events 90 days ahead of time
- Saving opportunity of $35m/yr in North America and $300m/yr globally
- Unique instrument with 1GB per instrument plus 10 years service data
- 50,000 unique instruments worldwide
- 25% reduction in service cost
- $300m potential savings globally
E Developing service to increase theatre utilisation without compromising quality

800k
Procedures across 16 hospitals over 8 years

35%
Improvement in procedure forecasting

12%
Increase in theatre suite utilisation
Lessons and scars.
Patterns we’ve spotted along the way

1
Start with what you have

• Leveraging latent internal and external data as an asset; think of ‘edge data’
• Embrace the taboo of ‘garbage’ data, instead invest in data provenance
• Variety more important than volume, so invest in ‘machine readable’ connectivity

2
Build feedback loops

• Focus on using your data to help you continuously improve
• Instrument everything; your process, your product, your people
• Capturing, interpreting and exploiting data at scale and at pace to outlearn your rivals

3
Build capabilities not models

• It’s not about the analytics; it’s how you embed them into the operating model
• Cascade performance driven use case to benefit from ‘network effects’
• Leaders invest in 5 building blocks: data & analytics, IT, process (incl. action and judgment), governance, and people / culture
Making it happen.
'Winners' have taken a few critical decisions to lay the foundation

Reporting lines, policies, standards
- How to structure the analytics function?
- Will we enforce global standards?

External data partnerships, data lakes
- How do we design win-win partnerships with distinctive data providers?
- What are do we need to consider regarding legal and privacy requirements?
- How do we tackle data security?

Business/IT interactions, internal processes in analytics "function"
- Do we create new analytics business partner roles?
- How do we design processes to be as agile as possible?
- What business processes need to be adapted which ones automated?

Talent, skills
- What skills gaps do we fill in first?
- How do we attract & retain talent?
- How do we manage change?

Analytics, data management, visualization platforms/tools
- What global platforms do we build as enterprise capabilities?
- What does this imply for the existing system landscape?
- What is the role of cloud-sourcing?
- How shall data be visualized?
Data: new paradigm needed

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data as by-product of the corporation to be managed internally</td>
<td>Data that can be acquired of created (e.g., sensors, public application, interfaces, crowd-surfing)</td>
</tr>
<tr>
<td>Traditional warehouse structured process to implement new data elements</td>
<td>Test-and-learn “data lakes” environment to make data available quickly</td>
</tr>
<tr>
<td>“Boring data” (e.g., structured, internal, and centralized data)</td>
<td>Diverse data (e.g., unstructured external and distributed data)</td>
</tr>
<tr>
<td>Receive dos and don’ts from legal</td>
<td>Really understand and actively shape corporate policies</td>
</tr>
<tr>
<td>Local data access restricted by physical location (e.g., home office desktop)</td>
<td>“Democratization” of data while keeping data security in any location, time, or device (e.g., iPad)</td>
</tr>
</tbody>
</table>
People: new capabilities needed

- **Analyze Big Data through advanced analytics to get strategic/business insights**
- **Drive the design and execution of the overall Big Data and analytic strategy**
- **Provide link across IT, analytics, and business**
- **Support the design, development and maintenance of the data architecture**
- **Responsible to develop the software to program with Big Data**
- **"Translate" business needs into advanced analytics language (e.g., define data requirements)**
- **Define the content of the data they own and are responsible for data quality**
- **Ensure future data requirements and delivery roadmap is robust and complete**
Forget about perfection, focus on progression and compound the improvement

Sir David Brailsford, CBE
Thank you.
Q&A.