Conditionnement à la greffe allogénique : Pourquoi et comment? Toute reproduction meme partielle est

Aix Marseille

-oute reproduction men

Didier Blaise, MD

Aix Marseille Univ (AMU)

Inserm, CNRS

Centre de Recherche en Cancerologie (CRCM)

Institut Paoli Calmettes (IPC)

Marseille, France

Toute reproduction meme partielle est interdite. Disclosures Toute reproduction meme partielle est interdite

- Honoraria: •
 - Pierre Fabre Medicaments
 - Sanofi-Gemzyne
 - Jazz Pharmaceuticals
 - Keocyt
 - Maat Pharma
 - Takeda

CRCM

- Medac Research Grants^C 201[°] Pierre Folo - Pierre Fabre Medicaments

Aix+Marseille

– Sanofi-Gemzyme 2010

CONDITIONING REGIMEN IS A MAJOR STEP OF ALLOGENEIC TRANSPLANT

- The ideal preparative regimen for marrow transplantation of patients with malignant diseases should
 - Be capable of eradicating malignancy.
 - Have sufficient immunosuppressive effect ... to avoid graft rejection
 - Have tolerable morbidity without mortality
- The search for an ideal preparative regimen serving all these purposes have been a major focus ... over the past 20 years

NO IDEAL PREPARATIVE REGIMEN CURRENTLY EXISTS

Aix+Marseille

Finn B. Petersen and Scott I. Bearman Preparative regimens and their toxicity In Bone Marrow tranplantation by SJ Forman, KG Blume and ED Thomas, 1994

Age

- < 45-60 y
- **No limit**

Comorbidities

- Sorror < 3
- **Major comorbidities**
- Geriatric assessment

Diseases

- AML CR1
- CML CP & Non my foid diseases
- anio: anio: Standard Chemotorerapy 'ridges 2018 - Refractory disease Pre allo:

CRCM

Aix+Marseille

Donor

- Matched sibling
- Matched unrelated

Droitsreserves

Bone Marrow

Cord Blood

Graft source

PBSC

Toute reproduction meme partielle est intendite. **Mismatched donors**

Toute reproduction RTC **Post allo:**

- None
- **Chimerism / MRD**

Allo-HSCT

- DLI
- **New drugs**

Conditioning

TBI/Cyene

BU/Oy

Results have changed with more thoughtful conditionings Reduced Intensity and reduced **Toxicity** conditionings

Have sufficient immunosuppressive effect to avoid graft rejection Non Myeloablative Conditioning

Table 1. Marrow Grafts From DLA-Identical Littermates After Conditioning With Sublethal TBI Delivered at 7 cGy/min or No Conditioning

Have sufficient immunosuppressive effect to avoid graft rejection

Have sufficient immunosuppressive effect to avoid graft rejection

Inadvertent completely HLA-mismatched allogeneic unrelated bone marrow transplant: lessons learned

A male patient, born in 1960, was referred for allogeneic transplantation with a T-cell lymphoma in second CR. A 9/10 allele HLA-matched (HLA-A, -B, -C, -DRB1 and -DQB1) unrelated donor (donor 1) was identified in June 2012(Allogeneic stem cell transplantation was scheduled for September 2012, including arrangements with the donor center (donor center 1). The transplant was canceled because, the patient's disease relapsed after which the patient received ourther treatment and achieved a

2018 Congress de l

Aix+Marseille

third CR. A mon-myeloablative conditioning regimen transplant was performed in May 2013 with a stem cell graft thought to be from donor 1. One month post transplant, it was recognized that the patient had been transplanted using the wrong donor, due to a query from donor center 1 asking whether their donor (donor 1) was still needed. It was then realized that the patient had been transplanted from donor 2, who turned out to be a complete HLA mismatch (0/10). National and international cooperative transplant centers were consulted, and although the patient was in CR, without evidence of GvHD and fully engrafted with 100% donor chimerism, it was evaluated that this transplantation would

Randomized Evaluation of Dose Intensity The less intensive, the best?

HLA-Matched, Related Allo PBSCT

Meta-analysis of the actions of antithymocyte globulin in patients undergoing allogeneic hematopoietic cell transplantation

Meta-analysis of the actions of antithymocyte globulin in patients undergoing allogeneic hematopoietic cell transplantation

Jiaojiao Yuan^{1,2}, Renzhi Pei², Wensi Su¹, Junjie Cao² and Ying Lu²

Relapse								100 day	No	^x R	ela	ps	e M	ortality	
Rabbit ATG	ATG		Contro	ol		Risk Ratio	Risk Ratio	Rabbit ATG	n'er AT(G	Contro	ol		RiskRatio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	Study or Subgroup	Events	Total	Events	Total	Weight	McN. Fixed, 95% CI	M-H, Fixed, 95% Cl
Bacigalupo, A 2001a	3	29	3	25	3.7%	0.86 [0.19, 3.90]		Bacigalupo, A 2091a	9	29	5	25	6.4%	1.55 [0.60, 4.03]	
Bacigalupo, A 2001b	10	27	5	28	5.6%	2.07 [0.81, 5.28]	<u>+</u>	Bacigalupo A2001b	9	27	11	28	12.8%	0.85 [0.42, 1.72]	1
Bacigalupo, A 2010	24	84	21	86	23.6%	1.17 [0.71, 1.93] e		Bacigaluco, A 2010	14	84	24	86	28.2%	0.60 [0.33, 1.07]	
Finke, J 2009	30	103	23	98	26.8%	1.24 [0.78, 1.98]		Champlin E 2007	5	70	7	60	9.0%	0.61 [0.20, 1.83]	
Kroger, N 2016	27	83	18	72	21.9%	1.30 [0.78 8.16]		Doney KC 1981	å	30	12	X1/12	11 0%	1.05 [0.51, 2.17]	_ _
Walker, I 2016	11	99	16	97	18.4%	0.67 [0.38, 1.38]		Einko 12000	12	102	, jo	- 42	10 20/	0.76 [0.39, 1.54]	
						<u> </u>	erver	Weiden PI 1070	12	20	ep 11	90	13.5%	0.70 [0.36, 1.34]	
Total (95% CI)		425		406	100.0%	1.17 [0.91, 1.49]	▼ iese	Welden, F.L 1979	5	xe		21	10.070	0.42 [0.17, 1.00]	
						S	aits)	Total (95% CI)		A972		366	100.0%	0 75 [0 56 1 00]	۲
1 year O	voro		2	dis e	- AS		D ^{rO}	Total (55% CI)		5/2	222	500	100.070	0.70 [0.00, 1.00]	
i year U	vera		JUIN		E .										
				رى				Intectio	ns						
Rabbit and horse ATG	ATG		Contro	\$)		Risk Ratio	Risk Ratio								
Study or Subgroup	Events	Total	Evento	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl		ATG	l.	Contro	l		Risk Ratio	Risk Ratio
Bacigalupo, A 2001a	17	29	رن م	25	5.3%	0.86 [0.57, 1.30]		Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Bacigalupo, A 200 ID Bacigalupo, A 2010	43	21	42	20	3.4% 12.1%	1 05 [0.51, 1.77]	+	rabbit ATG							
Champlin, E 2007	62	70	50	60	15.7%	1.06 [0.92 .22]	+	Kroger N 2016	49	83	30	72	20 6%	1 07 [0 81 1 41]	+
Doney, KC 1981	16	30	16	42	3.9%	1.40 [0.04, 2.33]	+	Kiuger, N 2010	40	00	39	12	29.0%	1.07 [0.01, 1.41]	
Finke, J 2009	71	103	62	98	18.5%	1.08 [0.89, 1.33]	+	Walker, 12016	42	99	37	97	24.7%	1.11 [0.79, 1.57]	Δ.
Kroger, N 2016	68	83	63	72	19.6%	0.94 [0.82, 1.07]	•	Subtotal (95% CI)		182		169	54.3%	1.09 [0.87, 1.35]	T
Walker, I 2016	74	99	63	97	18.5%	γ ⁰ 1.15 [0.96, 1.39]	-								
Weiden, P.L 1979	12	29	10	27	3.0%	1.12 [0.58, 2.15]									
Total (95% CI)		554		535	100.0%	1.06 [0.97, 1.15]	•				(Эn	cotai	rget, 2017	18

. XO

Importance of r-ATG Dose ?

Association between anti-thymocyte globulin exposure and survival outcomes in adult unrelated haemopoietic cell transplantation: a retrospective, pharmacodynamic cohort analysis

rtiell			dite
Overall survival		ŢĮ,	e)
Optimum ATG exposure	1-00 (ref)	est	
Below optimum ATG exposure	2.41 (1.15-5.00	Alelle	0.020
Above optimum ATG exposure	2.11 (1.04-4.2)	7)	0.038
Event-free survival	merri		
Optimum ATG exposure	1-00 (ref)		**))
Below optimum ATG exposure	02.54 (1.29-5.0	0)	0-0070
Above optimum ATG exposure	دو ^{رم} 1-83 (0-97-3-4	7)	0.063
Non-relapse mortality			
Optimum ATG exposure	1-00 (ref)		
Below optimum ATG exposure	4-36 (1-60-11-88)	0-0040	
Above optimum ATG exposure	1.64 (0.58-4.62)	0-35	
Relapse mortality			
Optimum ATG exposure	1-00 (ref)	**	
Below optimum ATG exposure	1-45 (0-55-3-83)	0.46	
Above optimum ATG exposure	2.66 (1.12-6.31)	0.027	
Relapse incidence			
Optimum ATG exposure	1.00 (ref)	**	
Below optimum ATG exposure	1.28 (0.57-2.86)	0-55	
Above optimum ATG exposure	1.79 (0.89-3.61)	0-11	

Admiraal R et al. Lancet Hematol. 2017

New drugs? or new ways to use old drugs? Toute reproduction meme partielle est interdite , meme partielle

- Alkylating agents
 - Busulfan
 - Treosulfan
- Thiotepa , ^c
 Immunosuppressive agents

Aix+Marseille

- Fludarabine
- Other purin analogs

"There is nothing new under the sun but there are lots of old things we don't know." Ambrose Bierce, The Devil's Dictionary

Myelofibrosis : PK Guided Higher Dose Busulfan

INSTITUT PAOLI

Myeloablative Timed Sequential Busulfan Conditioning

MARSEILL

22

Why include TEPADINA[®] in a preparative regimen prior to HSCT?

- Excellent myeloablative and Immunosuppressive activities, particulation - The early stages of clinical development showed the efficacy of

 - Low non-hemopolietic toxicity and lack of cumulative toxicity with TBI, busulfan, treošulfan, cyclophosphamide or fludarabine
 - Doses could be escalated up to 15 mg/kg without triggering significant extra-hematological toxicity
 - Penetration of blood-brain barrier and blood-cerebral spinal fluid ^{ov}avoiding neurotoxicity
 - Thiotepa can be used in a wide spectrum of *patients and diseases* from paediatric to elderly!

The European Group for Blood and Marrow Transplantation

Nucleoside Analogs (NAs)

RIC Clo-Bu-ATG vs. Flu-Bu-ATG AML / MDS

Chevallier Cancer Medicine 2016

MAC Clo + Flu + Bu for advanced diseases

Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia

CONDITIONING REGIMEN IS A MAJOR STEP OF ALLOGENEIC TRANSPLANT

- The **ideal** preparative regimen for marrow transplantation of patients with malignant diseases should
 - Be capable of eradicating malignancy of
 - Be capable to avoid rapid disease evolution
 - Have sufficient immunosuppressive effect to avoid graft rejection

Aix+Marseille

