

> Du 23 au 25 novembre 2022 Le Corum - Palais des Congrés

Evaluation du risque résiduel de contamination bactérienne dans les concentrés plaquettaires traités par la technique d'atténuation des pathogènes en Tous droits France

<u>Caroline Lefort1</u>, Anne-Gaele Chartois1, Imad Sandid2, Alexis Baima3, Marie Colombat4, Nadia Khaldi4, Martin Tribout5, Laurent Aoustin3, Lila Chabli3, Frederic Bigey1, Virginie Ferbera-Tourenc3, Pascal Morel3, Pierre Tiberghien3, Pascale Richard3

1Etablissement Français du Sang (EFS), Nantes; 2Agence Nationale de Securite du Medicament (ANSM), St-Denis; 3EFS, La Plaine St-Denis; 4EFS, Bordeaux; 5EFS, Toulouse, France

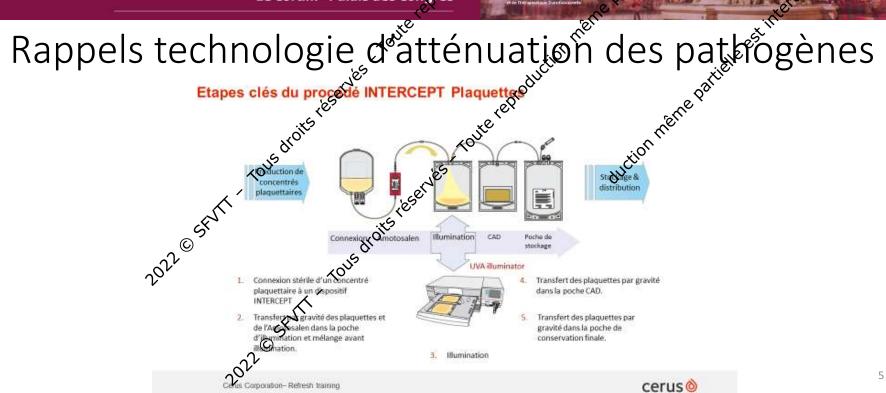
Du 23 au 25 novembre 2022 Le Corum - Palais des Congrès

Introduction

- troduction

 La prévention du risque de contamination bactérienne par transfusion de produits sanguins de meure un enjeur de sécurité transfusionnelle
- La technologie d'atténuation des pathogènes (intercept, Cerus) sur les produits plaguettaires est un moyen efficace de réduire la fréquence des incidents bactériens transmis par transfusion
- Le déploiement de la technologie Intercept sur tous les produits plaquettaires (MCP, CPÁ) en France a été mis en place depuis novembre 2017 et sur l'ensemble des régions EFS (4 régions : une en métropole plus les 3 DOM au avaient déployé auparavant (EFS GEST :2006), environ 8% consommation des produits plaquettaires).

Du 23 au 25 novembre 2022 Le Corum - Palais des Congrès



Objectif et Méthode Andre

- jectif et Méthode de contamination par transfession de plaquettes depuis la mise en place de la technique d'atténuation des pathogènes (novembre 2017)
- La période étúdiée est celle de 01/01/2013 au 15/05/2022
 - L'analysé des infections bactériennes transmises par transfusion (IBTT) de la base d'hémovigilance EFS/ANSM (rapports hémovigilances ANSM) sur la période
 - L'afralyse des contaminations bactériennes découvertes à l'EFS ayant été arrêtées au service de délivrance (et avant cession aux ES)
 - En prenant en compte l'extension de la durée de vie des plaquettes de 5 à 7 jours en juillet 2019 (J.O.

> Du 23 au 25 novembre 2022 Le Corum - Palais des Congrès

XIVe CONGRÈS NATIONAL

Du 23 au 25 novembre 2022 **Le Corum - Palais des Congrés**

Enveloped viruses	Technical Data Sheet	Published Studies	
HIV-1 Cell-associated	>6.1	>6.6	ı
HIV-1 Cell-free	>6.2	>6.7	J
HTLV-I ^b	4.7	5.2 4.6 2.5 >6.7	je
HTLV-II ^b	5.1	4.6	١.
Hepatitis B Virus (HBV)	>5.5	,0,525	i
Duck Hepatitis B virus (DHBV) a model for HBV	>6.2 >4,0 >6.0 >6.0	>6.7	
Hepatitis C Virus (HCV)	>4.5	>4.5	1
Bovine Viral Diarrhea Virus (BVDV) a model for HCV	25.0	>6.5	ı
West Nile virus (WNV)	5 >6.0 -	>6.0	- 1
Zika virus (ZIKV)	-	>5.4	- 1
Deligne Alinz (DEMA)-T	-	>5.0	- 1
DENV-2	-	>5.2	
DENV-2 DENV-3 DENV-4 Yellow Fever virus (YFV)	-	>4.5	
DENV-4	-	>5.2	
Yellow Fever virus (YFV)		>5.5	
Cytomegalovirus (CMV)	>5.9	>6.4	١ (
Chikungunya virus (CNIKV)	>6.4	>6.40	?
Mayaro virus (MAYV)		>6.9	
Ross River virus (RRV)		>5.1	
Severe acute respiratory syndrome (SARS)-CoV		>6.2	
Middle East respiratory syndrome (MERS)-CoV	7	>4.5*	
SARS-CoV-2	54	>3.3	
Vaccinia virus) -	>5.2	
Influenza A H5N1	>5.9	>5.9	
SARS-CoV-2 Vaccinia virus C Influenza A H5N1			

Non enveloped viruses	Technical Data Sheet	Published Studies
Bluetongue virus type 11	>5.0	6.1 to 6.4
Human Adenovirus 5	>5.9	×35.7
Feline Calicivirus (FCV)	1.7 to 2.4	2.7 to 2.4
Human Parvovirus B-19	1.8", 0	2.1
	~~	

Parasites	Tox Call Data sheet	Published Studies		
Plasmodium falciparum	≥6.0	≥6.0		
Trypanosoma cruzi	>5.3	≥5.4		
Babesia microti	>5.3	>5.3		
Leishmania mexicana	>5.0	>5.0		
Leishmania major Jish	>4.3	>4.5		

~ 25 virus species

~ 5 parasite species

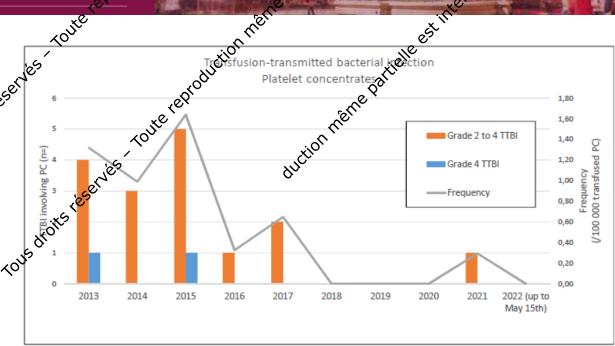
~ 20 bacteria species

	Technical Data
Bacteria	Sheet and Published Studie
Gram-Negative Bacteria Klebsiella pneumoniae Escherichia coli Serratia marcescens Pseudomonas gerus essa	Published Scott
Klebsiella pneumoniae	>5.6
Escherichia coli	>6.4
Serratia marcescens	>6.7
Pseudomonas aerugilisa Salmonella chole Gesuis Enterobocter Charce	4.5
Salmonella chole Gesuis	>6.2
Enterobacter coacae	5.9
rersinia ernerocontica	>5.9
Anaples va phagocytophilum Accurobacter baumannii	>4.2"
Accessobacter baumannii	>6.0
Gram-Positive Bacteria	
Staphylococcus epidermidis	>6.6
Staphylococcus aureus	6.6
Staphylococcus pyogenes	>6.8
Listeria monocytogenes	>6.3
Corynebacterium minutissimum	>6.3
Bacillus cereus (vegetative)	>6.0
Bacillus cereus (includes spores)	3.6
Anaerobic Gram-Positive Bacteria	
Bifidobacterium adolescentis	>6.5
Propionibacterium acnes	>6.7
Clostridium perfringens (vegetative)	>7.0
Lactobacillus species	>6.9
Spirochete Bacteria	
Treponema pallidum (Syphilis)	≥6.8 to ≤7.0
Borrelia burgdorferi (Lyme disease)	>6.8

Du 23 au 25 novembre 2022 Le Corum - Palais des Congrès

Résultats

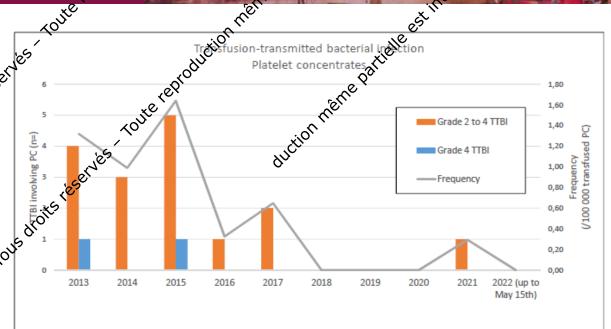
- Sultats


 Une moyenne de 304 360 concentrés de plaquettes et de 332 000 sont transfusés annuellement en France de 2013 à 2016 et de 2018 à 2021 respectivement.
 - La fréquence sálculée du risque résiduel est de 1/93600 pour une plaquette transfusée (CPA ex MCP) pour la période allant de 2013 à 2016 et de 1/1/453700 pour la période entre 2018 et mai 2021 (p<0,001)

Du 23 au 25 novembre 2022 Le Corum - Palais des Congrès

Résultats

- N=16
- Imputabilité 2 (probable) et 3,005 (certaine)
- Deux grade IV (décès) sur la période 2013 et 2017: Aucun grade IV depuis.



Du 23 au 25 novembre 2022 Le Corum - Palais des Congrés

Résultats

• Depuis le déploiements • de l'inactivation de l'inactivation de s'é pathogènes sur les concentrés plaquettaires en 2017, 1 IBTT a étè rapporté, mettant en cause le Bacillus Ceréus (CPA à J4, grade 3 (sévère), imputabilité cextaine)

Du 23 au 25 novembre 2022 Le Corum - Palais des Congrès

Résultats

• Les contaminations bactériennes découvertes à l'EFS (appelées « near miss » ou présque IBTT), produits plaquettaires arrêtés à la délivrance EFS avant la cession aux ES ayant fait l'objet d'un contrôle bactériologique positif sont répertoriés dans le schéma ci-dessous:

Année	2013	2014	2015	2018	2017	2018	2019	2020	2021	2022
MCP	ax ~	0	1	:WS	1	0	0	0	1	0
СРА	©1	0	0 0	3CO	1	0	0	0	0	1

• Les contaminations bactériennes ont été toutes découvertes suite au contrôle de l'indice de tournoiement trouvé négatif avant la délivrance (un présente un magma visible à l'œil nu). Les CGR associés ont dous été détruits.

Du 23 au 25 novembre 2022 Le Corum - Palais des Congrès

Résultats

• Sur la période 01/2013-11/2017:

2013 MCP : Streptococcus intermedius + Staphylococcus warneri + Streptococcus constellatus - IT nég

2013 CPA: Staphylococcus aureus - IT nég

2015 MCP: Staphy ococcus aureus - IT nég ✓

2017 CPA : Citrobacter koseri –IT nég +"Wagma"

2017 MCP Bacillus cereus - IT nég

• Sur la périgé 11/2017 – 05/2022

2027 MCP: Bacillus cereus + Staphylococcus epidermidis - IT nég

2022 CPA: Staphylococcus aureus - IT nég

• Les cas de « near-miss » sont peu nombreux (<1 par an), mais semble persister avec des CP ayant fait l'objet d'une atténuation des pathogènes. Ceux-ci restent très minoritaires pau sein des CP avec indice de tournoiement négatif.

Du 23 au 25 novembre 2022 Le Corum - Palais des Congrès

Conclusion 1

- nclusion 1

 Une enquête approforndie est réalisée sur les produits avec indices de tournoiements négatifs (et bactério positive) en 2021 (arrêtés au service de délivrance) et sur l'IBTT (2021)
- -> le processus de fabrication est vérifié (contrôles du témoin d'inactivation, tests d'étanchéité). Aucune fuite n'est détectée
- -> auprès du donneur et réceveur= aucun élément n'est retrouvé mettant en cause l'origine de la contamination
- -> des mécanismes de résistance (Bactéries sous forme sporulées: Bacillus cereus par ex) de la technologie d'atténuation des pathogènes sont rapportés?

Du 23 au 25 novembre 2022 Le Corum - Palais des Congrès

Conclusion 1

• Des cas sont rapportés dans la dittérature aux SSA évoquant des micro-fuites ét des contamination bactériennes d'origine ગngeme. ade,∯ (Fadeyi et u., al, Transfusion 2021)). environnémentales (4 IBT rapportés entre 2018 et 2021, dont 2 grade & (Fadeyi et al, Teansfusion, 2020; FDA, 2019 et 2021; Gammon et

14

Du 23 au 25 novembre 2022 Le Corum - Palais des Congrès

Conclusion 2 et 3

- 2. l'introduction de la technique d'attenuation des pathogènes a permis une forte de de la 和 que que nce d'IBT Ten France même si le risque théorique a augmenté du fait de l'extension de la durée de vie des plaquéttes de 5 à 7 joûrs.

 • 3. le risque de contamination par transfusion de plaquettes reste
- néanmoins présent mais rare.

Du 23 au 25 novembre 2022 Le Corum - Palais des Congrès

Conclusion

- 4. le maintien des mésures préventives est essentielle le la vigilance lors de la manipulation des poches,

 Les inspections visuelles du produit lors du procéde de fabrication,

 - Le contrôle de l'indice de tournoiement (IT) à la délivrance et le contrôle, bactériólogique si cet IT est négatif,
 - La surveillance du patient pendant et après la transfusion.

